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{XA.i/}B1
i=1 as in random-ensemble classification and derive the corresponding column basis {Q.i/}B1

i=1. Can
we construct an aggregated column basis Q̃ from {Q.i/}B1

i=1 such that Q̃ will converge to the top k left
singular space of X as B1 increases to∞?

Finally, we further stress an important advantage of the ensemble classifier proposed: its full adaptivity
to the distributed computing architecture. To implement the random-projection ensemble classification in
a distributed computing system, we first let each node computer solve for classification on randomly pro-
jected data. Then, according to the estimated risk of the base classifier on each node computer, we can screen
out the good projections as described in Section 3 of the paper and construct the final ensemble classifier.
Note that the algorithm does not require high communication cost since random projections are small.

Yang Feng (Columbia University, New York)
I congratulate Dr Cannings and Professor Samworth on their novel and stimulating contributions to
classification using random-projection ensembles (RPEs). It is quite a general framework and we expect
to see many follow-up works on the idea combined with some popular classifiers.

Regarding the choice of B2, the authors did a careful theoretical analysis through assumption 2 and
theorem 3. In assumption 2, I wonder whether β should depend on the sample size n or whether the authors
believe that there is a universal β for all n. If β in fact turns out to decrease as n increases, we would need
to conduct a more delicate analysis regarding the implications on the results of theorem 3 as n→∞.

Here, I propose a variant of the RPE approach. In this variant, the random projections are not generated
independently; instead, the selected B1 random projections are chosen sequentially and designed to be
mutually orthogonal. The intuition is that, by making the random projections mutually orthogonal, the
additional contribution of the newly recruited projections could be more significant than those without
such constraints. I expect the variant to have a competitive performance when B1 is small and the problem
is high dimensional. A detailed modification is outlined as follows.

First, generate A1 the same way as the RPE. Now, suppose that we have found the projections A1, A2, : : : ,
Ak, for some k. Then combine the corresponding random projections into the matrix Pk = .A1, A2, : : : ,
Ak/p×.dk/. To search for Ak+1, first generate B2 random projections {Ãk+1,b2}

B2
b2=1 according to the Haar

measure on A, and then define Ak+1,b2 = .I−Pk.PT
k Pk/

−1PT
k /Ãk+1,b2 as the orthogonal projection of Ãk+1,b2

onto the space P⊥k , which is the orthogonal complement of Pk. Afterwards, we can follow the same
procedure to find the optimal Ak+1 by using the new random-projections candidates. At the ensemble step,
I propose to use a weighted voting scheme based on the error rate on the test data {errb1}

B1
b1=1 as follows:

vn.x/ :=

B1∑
b1=1

wb1 I{C
Ab1
n .x/=1}

B1∑
b1=1

wb1

,

where wb1 = log{.1−errb1 /=errb1}. The final classifier can be created with a data-driven choice of the
threshold α by taking into account the weights.

Michael P. B. Gallaugher and Paul D. McNicholas (McMaster University, Hamilton)
We congratulate Cannings and Samworth on a very well-written, enjoyable, and interesting contribution.
Data collected today are often high dimensional and effective classification techniques for such data are
most welcome. In the simulations and the real data analyses, the authors compare the proposed ensemble
classifiers with the respective base classifiers as well as ‘state of the art’ techniques. We note the absence
of mixture discriminant analysis, which was introduced in this self-same journal over 20 years ago (Hastie
and Tibshirani, 1996) and subsequently studied by others (e.g. Fraley and Raftery (2002)). More general
discriminant analysis techniques could also be considered, where a flexible non-Gaussian density is used
for each class (see McNicholas (2016), section 9.2, for some discussion). It may also be interesting to
consider discriminant analysis using a mixture of factor analysers model (Ghahramani and Hinton, 1997)
or an extension thereof (see McNicholas (2016), chapter 3).

For brevity, we consider only mixture discriminant analysis, where the idea is to allow each class to be
modelled by using a Gaussian mixture model. For the eye state data set, we take 10 training–test splits
with 1000 observations in the training set, similar to the situation in the ‘n = 1000’ column of Table 3.
Using mixture discriminant analysis via the mclust package (Fraley et al., 2017), we obtained an average
misclassification rate, for the observations considered unlabelled, of around 0.18; this is a better result than
two of the three random-projection classifiers considered. We also note that the mice data set contains


