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A new family of penalty functions, ie, adaptive to likelihood, is introduced
for model selection in general regression models. It arises naturally through
assuming certain types of prior distribution on the regression parameters. To
study the stability properties of the penalized maximum-likelihood estimator,
2 types of asymptotic stability are defined. Theoretical properties, including
the parameter estimation consistency, model selection consistency, and asymp-
totic stability, are established under suitable regularity conditions. An efficient
coordinate-descent algorithm is proposed. Simulation results and real data
analysis show that the proposed approach has competitive performance in
comparison with the existing methods.
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1 INTRODUCTION

Classical work on variable selection dates back to Akaike,1 who proposed to choose a model that minimizes the
Kullback-Leibler divergence of the fitted model from the true model, leading to the well-known Akaike Information
Criterion (AIC). Schwarz and Gideon2 took a Bayesian approach by assuming prior distributions with nonzero probabili-
ties on lower-dimensional subspaces. They proposed what is known as the Bayesian information criterion (BIC) method
for model selection. Other types of L0 penalties include Cp,3 AICC,4 risk inflation criterion,5 and extended BIC (EBIC),6

among others.
The L0 regularization has a natural interpretation in the form of best subset selection. It also exhibits good sampling

properties.7 However, in a high-dimensional setting, the combinatorial problem has NP-complexity, which is computa-
tionally prohibitive. As a result, numerous attempts have been made to modify the L0-type regularization to alleviate the
computational burden. They include bridge regression,8 nonnegative garrote,9 LASSO,10 smoothly clipped absolute devia-
tion (SCAD),11 elastic net,12 adaptive LASSO (ALASSO),13 Dantzig selector,14 smooth integration of counting and absolute
deviation (SICA),15 and minimax concave penalty (MCP),16 among others.

To a certain extent, existing penalties can be classified into one of the following 2 categories: convex penalty and noncon-
vex penalty. Convex penalties, such as LASSO,10 can lead to a sparse solution and are stable as the induced optimization
problems are convex. Nonconvex penalties, such as SCAD11 and MCP,16 can, on the other hand, lead to sparser solutions
and the so-called oracle properties (the estimator works as if the identities of nonzero regression coefficients were known
beforehand). However, the nonconvexity of the penalty could make the entire optimization problem nonconvex, which,
in turn, could lead to a local minimizer, and the solution may not be as stable as the one if instead a convex penalty is used.
Therefore, an important issue for nonconvex penalties is a good balance between sparsity and stability. For example, both
SCAD and MCP have an extra tuning parameter, which regulates the concavity of the penalty so that, when it exceeds a
threshold, the optimization problem becomes convex.
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It is well known that penalty functions have Bayesian interpretation. The classical L2 penalty (ridge regression) is
equivalent to the Bayesian estimator with a normal prior. The L1-type penalties, such as LASSO and ALASSO, also have
Bayesian counterparts (cf. the works of Park and Casella,17 Griffin and Brown,18 and Hara and Sillanp19).

Breiman20 initiated the discussion about the issue of stability in model selection. He demonstrated that many model
selection methods are unstable but can be stabilized by perturbing the data and averaging over many predictors. Breiman21

introduced the random forest, providing a way to stabilize the selection process. Bühlmann and Yu22 derived the theoret-
ical results to analyze the variance reduction effect of bagging in hard decision problems. Meinshausen and Bühlmann23

proposed what they called stability selection, which combines the subsampling with high-dimensional variable
selection methods.

Despite efforts to deal with stability, there are many important and fundamental issues that remain to be addressed. In
particular, there is lack of consensus on the precise definition of stability for the high-dimensional penalized likelihood
estimators. To address this issue and to evaluate stability for the proposed method, we introduce herein the 2 types of
asymptotic stability for the maximum penalized likelihood estimators. The new concepts cover a wide range of situations
and provide a mathematical framework under which the issue of stability can be studied rigorously.

The main objective of this paper is to introduce a family of penalty functions for generalized linear models that can
achieve a proper balance between sparsity and stability. Because for the generalized linear models, the loss function is
often chosen to be the negative log-likelihood, and it is conceivable to take into consideration the form of the likelihood in
the construction of penalty functions. The Bayesian connection to the penalty construction and to the likelihood function
makes it natural to introduce penalty functions through suitable prior distributions. To this end, we introduce the family of
negative absolute priors (NAP) and use it to develop what to be called likelihood adaptively modified penalties (LAMPs).

The rest of this paper is organized as follows. Section 2 introduces the LAMP family with motivations from its Bayesian
and likelihood connections. Specific examples are given for the commonly encountered generalized linear models. In
Section 3, we introduce the 2 types of asymptotic stability and study the asymptotic properties of LAMP family. The choice
of the tuning parameters and an efficient algorithm are discussed in Section 4. In Section 5, we present simulation results
and applied the proposed method to the 2 real data sets. We conclude with a short discussion in Section 6. All the technical
proofs are relegated to the Appendix.

2 LIKELIHOOD ADAPTIVELY MODIFIED PENALTY

To introduce our approach, we will first focus on the generalized linear models.24 It will be clear that the approach also
works for other types of regression models, including nonlinear regression. Indeed, our simulation results presented in
Section 5 also include the probit model, which does not fall into the exponential family induced generalized linear models.

Throughout this paper, we shall use (X,Y ) and (Xi,Yi) to denote the independent and identically distributed random
variables for i = 1, 2, … ,n, where Yi is the response observation of Y and Xi is the p+1-dimensional covariate observation
of X, X i = (Xi0,Xi1, … ,Xi𝑝)𝜏 , Xi0 ≡ 1, and  = (X1,X2, … ,Xn)𝜏 . Moreover, we use 𝜽 for (𝛼,𝜷T)T. Following the work of
Nelder and Wedderburn,24 we assume that the conditional density of Yi given covariates Xi has the following form:

𝑓 (Yi,𝜽|X i) = h(Yi) exp
[

Yi𝜉i − g(𝜉i)
𝜙

]
, (1)

where 𝜉i = XT
i 𝜽, 𝜙 is the dispersion parameter, and g is a smooth convex function. Then, up to an affine transformation,

the log-likelihood function is given by

l(𝜽) =
n∑

i=1
[Yi𝜉i − g(𝜉i)] . (2)

Note that the form of l is uniquely determined by g.
For a given g, we propose the induced penalty function

𝑝𝜆(𝛽) =
𝜆2

g′(𝛼1)𝜆0

[
g(𝛼1) − g

(
𝛼1 −

𝜆0

𝜆
𝛽

)]
, (3)

which contains 3 parameters 𝛼1 ≤ 0, 𝜆0 > 0, and 𝜆 > 0. The corresponding penalized log-likelihood function is

l̃(𝜽) = l(𝜽) − n
𝑝∑

𝑗=1
𝑝𝜆(|𝛽𝑗|). (4)

Because the penalty function defined by (3) is likelihood specific, we will call such a penalty “LAMP.”
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Taking 𝛽 = 0, we clearly have p𝜆(0) = 0 and 𝑝′
𝜆
(0) = 𝜆. Furthermore, taking the first- and second-order derivatives,

we have

𝑝′
𝜆
(𝛽) = 𝜆

g′
(
𝛼1 −

𝜆0
𝜆
𝛽

)
g′(𝛼1)

and 𝑝′′
𝜆
(𝛽) = −𝜆0

g′′
(
𝛼1 −

𝜆0
𝜆
𝛽

)
g′(𝛼1)

.

Remark 1. The parameters have clear interpretations: 𝜆 is the usual tuning parameter to control the overall penalty
level; 𝛼1 is a location parameter, which may be fixed as a constant; 𝜆0 controls the concavity of the penalty in the same
way as a in SCAD and 𝛾 in MCP.

Like many other penalty functions, the family of LAMPs also has a Bayesian interpretation. To see this, we introduce
the following prior for any given g that defines the exponential family (1).

Definition 1. Let aj ≤ 0, bj < 0, and cj, j = 1, … , p, be parameters. Define the following prior density to be called
NAP:

𝑝(𝜷) ∝
𝑝∏

𝑗=1
exp

[
−c𝑗

{
g(a𝑗) − g(a𝑗 + b𝑗|𝛽𝑗|)}] . (5)

Let

a𝑗 = 𝛼1, b𝑗 = −𝜆0∕𝜆, c𝑗 = − 𝜆2

g′(𝛼1)𝜆0
,

and we will get the posterior mode exactly the same as optimizing the penalty form of LAMP. We form this to achieve the
good asymptotic property as in the next section. Note that cj ≥ 0 if g′(𝜉) > 0.

Remark 2. We know that g′(𝜉) = E(Y|x). When the response is nonnegative (eg, logistic and Poisson), we typically
have g′(𝜉) > 0, implying that the corresponding LAMP must be concave.

Remark 3. The additive form for the penalty function entails that the prior must be of product form. The parameter
bi scales 𝛽 i, whereas ci represents the rate of decay. For the ith parameter 𝛽 i, the larger the values of bi and ci are, the
more information the prior has for 𝛽 i. Translating it into the penalty function, it means that the values of bi and ci
represent the level of penalty and they can be adjusted separately for each component.

Remark 4. Note that the form of the prior is similar to the form of the conjugate prior, both in their similar shapes
to the likelihood function, whereas NAP differs at several points: negative when g′(·) > 0, absolute, from separate
dimension, and with a LASSO term taken away. Unlike conjugate prior, which assumes additional samples, this can
be seen as to take away the absolute value of redundant sample information from each dimension.

It is worth looking into the commonly encountered generalized linear models and examine the properties of the
corresponding LAMPs.

Linear regression. In this case, g(𝜉) = 𝜉2∕2. Thus, LAMP reduces to the elastic net12

𝑝𝜆(𝜃) = 𝜆𝜃 − 𝛼−1
1

𝜆0

2
𝜃2.

Logistic regression. Here, g(𝜉) = log(1 + e𝜉). Consequently, the penalty function

𝑝𝜆(𝜃) =
𝜆2(1 + 𝜌)

𝜆0𝜌
log

[
1 + 𝜌

1 + 𝜌 exp(−𝜆0∕𝜆𝜃)

]
, (6)

where 𝜌 = exp(𝛼1) > 0. This penalty will be called sigmoid penalty.
Poisson regression. Since g(𝜉) = e 𝜉 , we have

𝑝𝜆(𝜃) =
𝜆2

𝜆0

[
1 − exp

(
−𝜆0

𝜆
𝜃

)]
.

This will be called the Poisson penalty.
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Gamma regression. For the gamma regression, we have g(𝜉) = − log(−𝜉). Then, the penalty has the following form:

𝑝𝜆(𝜃) =
𝜆2𝛼1

𝜆0

[
log(−𝛼1) − log

(
𝜆0

𝜆
𝜃 − 𝛼1

)]
.

Inverse Gaussian regression. For the inverse Gaussian, we have g(𝜉) = −
√
−2𝜉. The resulting penalty

𝑝𝜆(𝜃) =
2𝜆2

𝜆0
(−𝛼1)1∕2

[(
𝜆0

𝜆
𝜃 − 𝛼1

) 1
2

− (−𝛼1)1∕2

]
.

Probit regression. As we mentioned earlier, LAMP approach can also accommodate nonexponential family–based
regression models. In particular, it is applicable to the probit regression for binary outcomes. In this case, g(𝜉) =
− log(Φ(−𝜉)), which leads to the following penalty form:

𝑝𝜆(𝜃) =
𝜆2

𝜆0

𝜙(−𝛼1)
Φ(−𝛼1)

log
[
Φ

(
−𝛼1 +

𝜆0𝜃

𝜆

)
− Φ(−𝛼1)

]
,

where Φ(·) and 𝜙(·) are the cumulative distribution function and the density function of the standard normal distribution,
respectively.

Remark 5. For the above examples, the effect of the parameters on the penalty function is very different across settings.
For example, 𝛼1 does not play a role in Poisson regression. In addition, we have a natural choice for 𝛼1 for all penalty
functions. Specifically, we can choose 𝛼1 = −1 for the cases of linear, gamma, and inverse Gaussian, and 𝛼1 = 0 for
the cases of logistic and probit.

The above examples show that the proposed LAMP family is fairly rich. They also differ from the commonly used
penalties. Figure 1 contains plots of penalty functions (left panel) along with their derivatives (right panel) that include
LASSO, SCAD, and MCP and the 2 members of the LAMP family (sigmoid and Poisson). Here, 𝛾 = 1.1 for MCP, 𝛾 = 2.1 for
SCAD, 𝜆0 = 2∕1.1 for sigmoid and 1∕1.1 for Poisson penalty, and 𝜌 = 1 for sigmoid penalty. The parameters are chosen to
keep the maximum concavity of these penalties the same. Figure 1 shows that sigmoid and Poisson penalties lie between
MCP and SCAD when the maximum concavity is the same. In addition, from the graphs of the derivatives, it is easy to
identify that the penalties of the LAMP family have continuous derivatives (actually, they have continuous derivatives of
any order for most common generalized linear models) as compared with the discontinuous ones for SCAD and MCP. It
will be shown that this feature can make the optimization problem easier and the estimation more stable.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

LASSO
SCAD
MCP
sigmoid
Poisson

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

LASSO
SCAD
MCP
sigmoid
Poisson
asymptote

FIGURE 1 Penalties and the derivative of the penalties. MCP, minimax concave penalty; SCAD, smoothly clipped absolute deviation
[Colour figure can be viewed at wileyonlinelibrary.com]
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3 THEORETICAL PROPERTIES

3.1 Asymptotic stability
Recall that the log-likelihood considered here is concave, and the maximum likelihood estimator (MLE) is uniquely
defined and stable. By adding a nonconvex penalty, the concavity may be destroyed. To study stability of the penalized
MLE, it is necessary to study the impact of the penalty on the concavity, especially when n is large.

For the penalized maximum log-likelihood estimation procedure (4), if nonconvex penalties are used, the solution to
the maximization problem may not be unique. Therefore, it is natural to study the behavior of the local maximizers in
penalized likelihood estimates when the observations are perturbed. Here, we introduce a new concept of asymptotic
stability to describe the asymptotic performances of local maximizers in penalized likelihood estimates. Note that even for
the penalized maximum-likelihood estimators with convex penalty where the unique maximizer exists, such asymptotic
stability concept is still useful in characterizing the behavior of the global maximizer.

Suppose that we want to minimize with respect to 𝜽 a criterion function Mn(n,𝜽), where n = (Z1, … ,Zn)T and
Zi = (XT

i ,Yi)T is the ith observation of Z = (X,Y). Denote by SZ, Sn , and Θ the support for Z,n, and domain for 𝜽,
respectively. We say that 𝜽∗ is a local minimizer if there exists a neighborhood in which Mn(n, ·) attains its minimum
within that neighborhood. More precisely, the set of the local minimizers is defined as

arglmin
Θ

Mn(n,𝜽) ≜
{
𝜽∗ ∈ Θ|∃𝜖 > 0,Mn(n,𝜽

∗) = min||𝜽−𝜽∗||≤𝜖Mn(n,𝜽)
}

.

Throughout this paper, || · || indicates the square root of sum of square of each element of a matrix or a vector.
It is clear from the definition that the set of local maximizers is random. We characterize its asymptotic behavior in terms

of whether or not the set converges to a single point as n → ∞. For a set A, define its diameter as diam(A) ≜ sup
x,y∈A

||x − y||.
Definition 2. (Weak asymptotic stability)
We say that the set of local minimizers of Mn(Zn, ·) satisfies weak asymptotic stability if ∀𝛿 > 0,

lim
n→∞

P

⎛⎜⎜⎜⎜⎝
lim
𝜖→0

diam

⎡⎢⎢⎢⎢⎣
⋃

||n||∕√n<𝜖
n+n∈Sn

{
arglmin

𝜽

Mn(n + n,𝜽)
}⎤⎥⎥⎥⎥⎦

> 𝛿

⎞⎟⎟⎟⎟⎠
= 0. (7)

The weak asymptotic stability characterizes the asymptotic behavior of local minimizers when the data are perturbed
slightly. It shows that for large n and small perturbation, the local minimizers stay sufficiently close to each other with
high probability. Defined below is a stronger version, which guarantees the uniqueness of the minimizer.

Definition 3. (Strong asymptotic stability)
We say that the set of local minimizers of Mn(Zn, ·) satisfies strong asymptotic stability if

lim
n→∞

P

⎛⎜⎜⎜⎜⎝
lim
𝜖→0

diam

⎡⎢⎢⎢⎢⎣
⋃

||n||∕√n<𝜖
n+n∈Sn

{
arglmin

𝜽

Mn(n + n,𝜽)
}⎤⎥⎥⎥⎥⎦

= 0

⎞⎟⎟⎟⎟⎠
= 1. (8)

Remark 6. Under the weak asymptotic stability, multiple minimizers, although shrinking to 0, may exist with high
probability for any finite n. The strong asymptotic stability, on the other hand, entails that for sufficiently large n, the
probability of having multiple minimizers must converge to 0, implying that there must be a unique minimizer with
high probability.

Remark 7. L0 penalties, although may have the weak asymptotic property if we adjust its tuning parameter such as
AIC, will never possess the strong asymptotic property because then the solution of each submodel with the number
of parameters constrained will be a local optimizer, and with no probability, all solutions will coincide, as n → ∞.
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Remark 8. Fan and Li (2001) discussed that a good penalty function should result in an estimator with 3 properties:
unbiasedness, sparsity, and continuity. Here, we propose to add a fourth property, namely, “asymptotic stability,” for
a desirable penalty function.

We now consider the situation in which Mn(n,𝜽) can be approximated by an independent and identically distributed
sum with a remainder term, ie,

Mn(n,𝜽) =
1
n

n∑
i=1

m(Zi,𝜽) + rn(𝜽). (9)

This general form includes the form of a negative log-likelihood plus a penalty for us to study. Let mn(n,𝜽) ≜

n−1 ∑n
i=1 m(Zi,𝜽). We assume throughout the rest that Θ is compact with the true parameter value, denoted by 𝜽0, lying

in its interior and that m̄(𝜽) = Em(Z,𝜽) is finite. We need the following regularity conditions.

(C1) ∀x ∈ SZ,m(x,𝜽) is convex about 𝜽, and m̄(𝜽) is continuous and strictly convex.
(C2) Lipchitz-type condition: there exists projection K ∶ SZ → R such that EK 2(Z) < ∞ and, for arbitrary 𝜹1,𝜹2, and

x ∶ x + 𝜹i ∈ SZ, i = 1, 2,

sup
𝜽∈Θ

|m(x + 𝜹1,𝜽) − m(x + 𝜹2,𝜽)| ≤ K(x) ‖𝜹1 − 𝜹2‖ .
(C3) The remainder term is asymptotically flat:

lim
n→∞

sup
𝜽1,𝜽2∈Θ

|rn(𝜽1) − rn(𝜽2)|||𝜽1 − 𝜽2|| = 0.

(C4) There exists a local minimizer of (9) that is consistent to 𝜽0.
(C5) There exists 𝛿0 > 0 such that

lim
n→∞

P (Mn(n,𝜽) is strictly convex within o(𝜽0, 𝛿0) ∩ Θ) = 1.

Remark 9. When m and r are both smooth functions, Conditions (C2) and (C3) can be guaranteed by assuming that the
derivative of m is bounded uniformly and that the derivative of rn tends to 0 uniformly. Condition (C5) is guaranteed
by the convexity around the true parameters, uniformly in n.

The next 2 lemmas provide sufficient conditions for the 2 types of asymptotic stability.

Lemma 1. If Conditions (C1)-(C3) are satisfied, then we have weak asymptotic stability.

It is straightforward to verify that for generalized linear models, SCAD, MCP, sigmoid penalty and Poisson penalty, all
satisfy Conditions (C1)-(C3), leading to the weak asymptotic stability.

Lemma 2. If Conditions (C1)-(C5) are satisfied, then strong asymptotic stability holds.

With the 2 kinds of asymptotic stabilities, it makes sense to design an algorithm that converges to any element within
that local optimizer set from the view of large sample theory. While in reality with a finite “n”, it is also important for
us to choose a solution that is the closest to the truth or have a smooth enough solution path as the tuning parameter
𝜆 changes.

3.2 Asymptotic properties
In this section, we study asymptotic properties for the proposed LAMP, including parameter estimation consistency, model
selection consistency, and asymptotic stability. Let q ≜

∑𝑝

𝑗=1 I𝛽𝑗≠0 denote the number of signals and m = inf{|𝛽1|, … , |𝛽q|}
denote the minimum signal level. Here, we consider the setting of fixed p, q,m when n → ∞ although some results may
be extended to the case of 𝑝 = o(

√
n).

We first introduce certain regularity conditions that are needed for establishing asymptotic properties.

(C6) Let g(k) denotes the kth derivative of g. Then,

E|Y | + sup
𝜽∈Θ
0≤k≤2

E
(||X||k |||g(k) (XT𝜽

)|||) + .
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For any 𝜽, E|YXT𝜽−g(XT𝜽)| < ∞ and 𝜆min(EXg′′(XT𝜽)XT) > 0, where 𝜆min(D) of a symmetric matrix D denotes
its minimum eigenvalue. g′(x) > 0 at x ∈ [−∞, 𝛼1) and lim𝜉→−∞g′(𝜉) = 0; g′′(𝜉) is increasing at [−∞, 𝛼1), where
𝛼1 ≤ 0 is a constant. There exists 𝛿 > 0 such that

E

[||X||2
2g

′′ (XT𝜽0
)
+ ||X||3

1 sup||𝜽−𝜽0||≤𝛿g
′′′ (XT𝜽

)]
< ∞.

(C7) 𝜆 → 0,
√

n𝜆 → +∞, and
√

n𝜆g′(𝛼1 − 𝜆0m∕𝜆) → 0.
(C8) There exists a neighborhood of 𝜽0, denoted by Θ1, such that

𝜆min
{

E[XXT]
}
>

𝜆0g′′(𝛼1)|g′(𝛼1)| 1
min𝜽∈Θ1g

′′(XT𝜽)
.

Theorem 1. Suppose that Conditions (C6)-(C8) are satisfied. Then, the penalized maximum-likelihood estimator based
on the LAMP family is consistent and asymptotically normal and achieves model selection consistency and strong
asymptotic stability.

Lemma 3. Suppose that (C6) is satisfied and log[g′(−x)] = xuL(x), where constant u > 0 and function L(x) is negative
and slowly varying at ∞, ie, for any a > 0, limx→∞[L(ax)∕L(x)] = 1, and limx→+∞L(x) ∈ [−∞, 0). Then, n−1∕2 ≪ 𝜆 ≪

𝜆0(log n)−1∕u ≪ 1 implies (C7).

It can be verified that the logistic regression, the Poisson regression, and the probit model all satisfy the conditions
of Lemma 3.

Remark 10. To achieve model selection consistency, we can choose 𝜆0 = o(1) and 𝜆 = o((log n)−1∕u𝜆0).

Remark 11. For the case p = pn ≫ n, q = qn → ∞,m = mn → 0, we can directly apply the results in the work of Fan
and Lv.25 The corresponding conditions (B1)-(B10) on the rate of pn, qn,mn and the covarite matrix X, response Y can
be found in the appendix. If conditions (B1)-(B10) are satisfied, there exists �̂� ∈ Θ such that

P
[{

�̂�2 = 0
}
∩
{‖‖‖�̂�1 − 𝜷1

‖‖‖∞ = O
(

n−𝛾1 log(n)
)}]

≥ 1 − 2
[

qnn−1 + (𝑝n − qn)(1∕n)n1−2𝛾4
]
.

Now, we present the corresponding results for the case of sigmoid penalty. For sigmoid penalty, log(g′(−x)) = xL(x),
where L(x) = [− log(1 + ex)∕x], is a slowly varying function. The following conditions replace (C6)-(C8).

(C6') E||X||3 < +∞.
(C7') Constant 0 < 𝜌 < +∞, n− 1

2 ≪ 𝜆 ≪ 𝜆0∕ log n ≪ 1.
(C8') There exists a neighborhood of 𝜽0, denoted by Θ1, such that

𝜆0 < min
𝜽∈Θ1

𝜆min

[
E

(
X XT eX𝜽(

1 + eXT𝜽
)2

)]
(1 + 𝜌)∕𝜌.

The following proposition shows that the results of Theorem 1 carry over to the penalized logistic regression when
conditions are replaced.

Proposition 1. For penalized maximum-likelihood estimator of logistic regression, where the sigmoid penalty (6) is
applied, we have parameter estimation consistency, model selection consistency, and strong asymptotic stability under
conditions (C6')-(C8').

4 ALGORITHMS

An important aspect of a penalized likelihood estimation method is the computational efficiency. For the LASSO penalty,
Efron et al26 proposed the path-following LARS algorithm. In the work of Friedman et al,27 the coordinatewise descent
method was proposed. It optimizes a target function with respect to a single parameter at a time, cycling through all
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parameters until convergence is reached. For nonconvex penalties, Fan and Li11 used the LQA approximation approach. In
the work of Zou and Li,28 a local linear approximation–type method was proposed for maximizing the penalized likelihood
for a broad class of penalty functions. In the work of Fan and Lv,25 the coordinatewise descent method was implemented
for nonconvex penalties as well. Yu and Feng29 proposed a hybrid approach of Newton-Raphson and coordinate descent
for calculating the approximate path for penalized likelihood estimators with both convex and nonconvex penalties.

4.1 Iteratively reweighted least squares
We apply quadratic approximation and use the coordinate decent algorithm similar to the works of Keerthi and
Shevade.30,31 Recall that our objective function is the penalized log-likelihood l̃(𝜽) = l(𝜽) − n

∑𝑝

𝑗=1 𝑝𝜆(|𝛽𝑗|). Following the
work of Keerthi and Shevade,30 let F𝑗 = 𝜕l(𝜽)

𝜕𝜃𝑗
, and define the violation function

viol𝑗(𝜽) ≜
⎧⎪⎨⎪⎩
|F𝑗|, if 𝑗 = 0,
max{0,−n𝜆 − F𝑗 ,−n𝜆 + F𝑗}, if 𝜃𝑗 = 0, 𝑗 > 0,|||F𝑗 − nsgn (𝜃𝑗)𝑝′𝜆

(|𝜃𝑗|)||| , if 𝜃𝑗 ≠ 0, 𝑗 > 0.

We see that the objective function achieves its maximum value if and only if viol j = 0, for all j. Thus, we use
max𝑗{viol𝑗} < 𝜏 as the stop condition of our iteration, with 𝜏 > 0 being the chosen tolerance threshold.

In each step, we use quadratic approximation to the log-likelihood function l(𝜽) ≈ − 1
2
( ỹ − X𝜽)T( ỹ−X𝜽) + constant,

where  and ỹ depend on the current value of 𝜽. The algorithm is summarized as follows.
Algorithm: Set values for 𝜏 > 0, 𝜆, 𝜆0, 𝜌 > 0. Denote by X · j the ( j + 1)th column of  , 𝑗 = 0, … , 𝑝.

S1. Standardize Xi, i = 1, 2, … ,n.
S2. Initialize 𝜽 = 𝜽(0). Calculate viol = max{viol𝑗(𝜽)} and go to S3 if viol > 𝜏 or else go to S5.
S3. Choose 𝑗∗ ∈ arg max𝑗 viol𝑗(𝜽). Calculate  , v = 1

n
X ′

·𝑗∗X ·𝑗∗ , z = 1
n

X ′
·𝑗∗(ỹ − X𝜽) + v𝜃𝑗∗ . If j∗ ≠ 0, let r = 𝑝′

𝜆
(|𝜃∗

𝑗
|);

else r = 0.
S4. If 𝑗∗ = 0, 𝜃𝑗∗ = z∕v; else 𝜃𝑗∗ = sign(z)(|z| − r)+. Calculate viol = max𝑗{violj} and go to S3 if viol > 𝜏, else go to S5.
S5. Do the transformation of the coefficients 𝜃 due to standardization.

For S2, the initial solution 𝜽(0) can be taken as the zero solution or the MLE or the estimate calculated using a parameter
𝜆∗ ∈ o(𝜆, 𝜖) from the previous steps.

For S4, we first perform the iterations for the variables in the current active set until convergence, then check whether
additional variables should join the active set. Alternatively, we may speed up the calculation by using “warm start.”
Readers are referred to see the works of Keerthi and Shevade30,32 for details of the strategies to speed up calculation in
coordinate descent algorithms.

For example, the logistic regression with sigmoid penalty is
∑n

i=1log(1 + e−𝑦iXT
i 𝜃) + n

∑𝑝

𝑗=1 𝑝𝜆(|𝛽𝑗|), where 𝑝𝜆(𝜃) =
𝜆2

n(1+𝜌)
𝜆0

log[(1 + 𝜌)e𝜆0∕𝜆𝜃∕(1 + 𝜌e𝜆0∕𝜆𝜃)], for 𝜃 > 0. We define ri = exp(−𝑦iXT
i 𝜽), i = 1, … ,n, and F𝑗(𝜃) =

∑n
i=1 ri 𝑦iXi, 𝑗∕(1 +

ri), 𝑗 = 0, … , d. In S3, we have the following 2 different approximation methods for updating.

1. Quadratic approximation from iteratively reweighted least squares.33 Let  = 1
2
diag{tanh( 𝜋1

2
)∕𝜋1, … , tanh( 𝜋n

2
)∕𝜋n}

and ỹ = 1
2
−1y, where 𝜋i = XT

i 𝜽
(0)𝑦i.

2. Quadratic approximation using Taylor expansion. Let  = diag{𝜋1(1 − 𝜋1), … , 𝜋n(1 − 𝜋n)} and ỹ = X𝜽(0) +
−1[y ◦ (1 − 𝝅)], where 𝜋i = 1∕[1 + exp(−𝑦iXT

i 𝜽0)] and ◦ is the componentwise product operator.

For an initial estimator 𝜽(0), denote by a(𝜽,𝜽(0)) a quadratic approximation of −n−1l(𝜽) at 𝜽(0), ie,

a
(
𝜽(0),𝜽(0)) = −n−1l

(
𝜽(0)) , 𝜕a

(
𝜽,𝜽(0))
𝜕𝜽

|𝜽=𝜽(0) = −n−1l′
(
𝜽(0)) .

Theorem 2. Let  ⊂ Rd be a closed set and the objective function Mn(𝜽) = −n−1l(𝜽) + n
∑𝑝

𝑗=1 𝑝𝜆(|𝜃𝑗|) is strictly convex.
In addition, assuming that the quadratic approximation at 𝜽(0) satisfies a(𝜽,𝜽(0)) ≥ −n−1l(𝜽) for all 𝜽 ∈ , then the
algorithm constrained in  (achieve the minimum within ) converges to the true minimum 𝜃∗ = argmin𝜽 Mn(𝜽). In
addition, method 1 for logistic regression satisfies the conditions on quadratic approximation.
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4.2 Balance between stability and parsimony
It is important to address the issue of choosing tuning parameters in the penalized likelihood estimation. For the LAMP
family, there are 3 tuning parameters, ie, 𝜆, 𝜆0, and 𝛼1. Our numerical experiences show that the resulting estimator is not
sensitive to the choice of 𝛼1. In most cases, we may simply take 𝛼1 = −1 or 𝛼 = 0, depending on the type of regression (See
Remark 5). For 𝜆 and 𝜆0, we recommend using cross-validation (CV) or BIC, so long as the solutions are stable enough.
The ncvreg package described in the work of Breheny and Huang34 to determine a stable area or do local diagnosis is
recommended. There are 2 approaches to get a stable area: to control the smoothness of the 𝜆-estimate curve and calculate
the smallest eigenvalue of the penalized likelihood at each point of the path as stated in Theorem 1. Here, we take the
second approach in all numerical analysis.

Our algorithm differs from ncvreg in the following 2 aspects: we use the “viol” function as the convergence criteria; we
do not use the adaptive-scale. Both algorithms 1 and 2 use the linear approximation (suppose at 𝜃(0)) of the penalty term.
𝑝𝜆(|𝜃|) ≈ 𝑝𝜆(|𝜃(0)|)+𝑝′

𝜆
(|𝜃(0)|)(|𝜃|− |𝜃0|). For algorithm 1, from concavity, we have 𝑝𝜆(|𝜃|) < 𝑝𝜆(|𝜃(0)|)+𝑝′

𝜆
(|𝜃(0)|)(|𝜃|− |𝜃0|),

which naturally falls into the minorization-maximization algorithm framework.
To choose the (𝜆0, 𝜆) pair, we use the hybrid approach introduced by the work of Breheny and Huang,34 ie, combining

BIC, CV, and convexity diagnostics. For a path of solutions with a given value of 𝜆0 large enough, use AIC/BIC to select 𝜆
and use the convexity diagnostics to determine the locally convex regions of the solution path. If the chosen solution lies
outside the stable region, one can lower 𝜆0 to make the penalty more convex. Once this process has been iterated a few
times, we can find a value of 𝜆0 that produces a good balance between sparsity and convexity. Then, we can fix 𝜆0 and use
BIC or CV to choose the best 𝜆.

5 SIMULATION RESULTS AND 2 EXAMPLES

Simulation studies cover logistic, Poisson, and probit cases. The performance of the LAMP family is compared with those
of LASSO, SCAD, and MCP. Particular attention is given to the logistic regression to demonstrate how sparsity and sta-
bility are properly balanced. Two classification examples from microarray experiments involving persons with cancer
are presented.

TABLE 1 Model selection and estimation results for different penalties over 100
simulations. Mean values are presented with the standard error in parentheses. Here,
“sig” represents the sigmoid penalty

Penalties TP FP cf of uf L1 L2

sig(0)/LASSO 1.87 (0.053) 0.12 (0.041) 0.05 0.01 0.94 2.49 1.46
sig(.02) 1.87 (0.053) 0.11 (0.040) 0.05 0.01 0.94 2.48 1.45
sig(.03) 1.90 (0.052) 0.13 (0.042) 0.06 0.01 0.93 2.41 1.41
sig(.05) 1.95 (0.05) 0.15 (0.041) 0.08 0.01 0.91 2.34 1.36
sig(.07) 1.99 (0.048) 0.20 (0.047) 0.09 0.02 0.89 2.25 1.31
sig(.09) 2.02 (0.047) 0.20 (0.049) 0.1 0.02 0.88 2.17 1.26
sig(.15) 2.21 (0.057) 1.86 (0.43) 0.1 0.19 0.71 3.18 1.36
sig(.38) 2.61 (0.049) 4.65 (0.40) 0.1 0.51 0.39 6.23 2.13
SCAD(300) 1.69 (0.073) 0.14 (0.043) 0.04 0.01 0.95 2.94 1.74
SCAD(7) 1.69 (0.073) 0.14 (0.043) 0.04 0.01 0.95 2.94 1.74
SCAD(5) 1.84 (0.077) 3.20 (0.69) 0.03 0.11 0.86 2.94 1.74
SCAD(4) 2.25 (0.089) 12 (0.75) 0.01 0.45 0.54 91.9 23.5
MCP(300) 1.69 (0.073) 0.14 (0.043) 0.04 0.01 0.95 2.94 1.74
MCP(50) 1.70 (0.073) 0.16 (0.047) 0.04 0.01 0.95 2.94 1.74
MCP(15) 1.75 (0.073) 0.14 (0.043) 0.06 0.01 0.93 2.45 1.45
MCP(7) 1.79 (0.071) 0.14 (0.040) 0.07 0.01 0.92 2.21 1.31
MCP(5) 1.91 (0.081) 2.98 (0.69) 0.09 0.1 0.81 2.07 1.23
MCP(4) 2.29 (0.092) 11.89 (0.80) 0.02 0.50 0.48 109.3 28.7

Abbreviations: MCP, minimax concave penalty; SCAD, smoothly clipped absolute deviation.
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5.1 Logistic regression
We simulate from logistic regression model with n = 200, p = 1000, 𝛼 = 0, 𝜷 = (1.5, 1,−0.7, 0T

997)
T , and x ∼ N(0,Σ), where

Σi,j = 𝜌 + (1 − 𝜌)1i=j with 𝜌 = 0.5. The number of replications is 100 for this and all the subsequent simulations.
Table 1 reports true positive (TP), false positive (FP), proportion of correct fit (cf), proportion of over fit (of), proportion

of under fit (uf), |�̂� − 𝜷|1 (L1 loss), and |�̂� − 𝜷|2
2 (L2 loss). To compare performances among LASSO, SCAD, MCP and the

sigmoid penalty, we use glmnet to calculate the LASSO solution path, ncvreg to calculate the SCAD and MCP. For all
penalties, we use EBIC6 to choose the tuning parameter 𝜆 with other parameters fixed. The EBIC parameter 𝜂 = 1.

From Table 1, it is clear that the sigmoid penalty outperforms SCAD and MCP in the sense that at a similar level of TP,
the sigmoid penalty results in a smaller FP. Somewhat surprisingly, the LASSO has a competitive performance, which
may be attributed to the use of the EBIC selection criterion.

5.2 Smoothness
The same logistic regression model as in Section 5.1 except 𝛼0 = −3, 𝜷0 = (1.5, 1,−0.7, 0, 0, 0, 0, 0)T and Σi, j = 0.5|i−j| is
used. In Figure 2, we compare the smoothness of solution paths generated from the sigmoid penalty, SCAD, and MCP
with the same concavity at 0. It can be seen that this choice will also lead to similar sparse level as in Table 2. SCAD and
MCP use the same algorithm as sigmoid does (not adaptive scale as in ncvreg package). The shorter vertical line is the
BIC choice of 𝜆, and the longer one uses a 10-fold cross validation. To avoid variation due to the random division in the
CV, the result in Table 2 uses BIC to choose 𝜆 with the other tuning parameter fixed. Figures 2C and 2D for SCAD and
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FIGURE 2 Solution paths of the sigmoid penalty, LASSO, smoothly clipped absolute deviation (SCAD), and minimax concave penalty
(MCP) for the setting described in Section 5.2. A, Sigmoid(0.1); B, LASSO; C, SCAD(20); D, MCP(20) [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 2 The average true positive (TP) and false
positive (FP) over 100 simulations with the tuning
parameter selected by Bayesian information criterion for
the sigmoid penalty, smoothly clipped absolute deviation
(SCAD), and minimax concave penalty (MCP)

Sigmoid SCAD MCP
𝝀0 TP FP 𝜸 TP FP 𝜸 TP FP

.04 1.86 0.28 1.1 1.89 0.21 1.1 1.90 0.21

.05 1.81 0.22 7 1.89 0.21 7 1.90 0.21

.06 1.84 0.24 14 1.89 0.21 14 1.90 0.21

.08 1.89 0.22 20 1.89 0.21 20 1.90 0.21

.10 1.91 0.22 27 1.88 0.23 27 1.89 0.22

.11 1.89 0.21 34 1.83 0.23 34 1.86 0.24

.13 1.89 0.21 41 1.83 0.24 41 1.83 0.23

.15 1.89 0.21 54 1.83 0.28 54 1.83 0.29

.16 1.89 0.21 60 1.86 0.32 60 1.86 0.32

.18 1.89 0.21 67 1.88 0.35 67 1.88 0.36

MCP are both are less smooth than Figure 2A for the sigmoid penalty, which is of similar smoothness as Figure 2B for
LASSO. The sigmoid penalty appears to outperform SCAD and MCP in terms of smoothness of the solution path.

5.3 Stability
The data are generated in the same way as in the preceding section. For each replication, we repeat 100 times CV to select 𝜆
and calculate its mean sample standard deviation. The box plots for the mean sample standard deviations are generated. In
addition, to evaluate the asymptotic stability as introduced in Section 5.3, we add a small random perturbation generated
from N(0, 0.1) to all the observations before conducting the analysis. The box plot results are presented in Figure 3.

The result without the random error term evaluates the stability regarding the randomness of CV for each penalty.
The result with the random error evaluates the stability toward the random perturbation of the data. To ensure a fair
comparison, we choose the same level of concavity at 0 for SCAD, MCP, and the sigmoid penalty. It is seen from the box
plots that LASSO is the most stable one, whereas the sigmoid penalty outperforms SCAD and MCP in terms of both the
median and 75% quantile in the case without error and 75% quantile in the case with the error added.
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FIGURE 3 Box plots for the mean standard deviations in Section 5.3. The left panel shows the box plot without perturbation, and the right
one is that with perturbation. MCP, minimax concave penalty; SCAD, smoothly clipped absolute deviation
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5.4 Ultra-high-dimensional logistic regression with weak effects
In this section, we consider an ultra-high-dimensional logistic regression model with a mixture of strong and weak signals.
In particular, we set n = 300, p = 5000, 𝛼 = 0, 𝛽 = (2, 1.5, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0T

4988)
T , and x ∼ N(0,Σ),

where Σi, j = 𝜌 + (1 − 𝜌)1i= j with 𝜌 = 0.5. Here, we use EBIC to find the optimal parameters for all penalties.
The results are presented in Table 3. It is clear that LAMP leads to the smallest L1 and L2 losses and its edge over SCAD

and MCP is very obvious in this scenario with weak signals. On the other hand, we observe that LASSO has the best
performance in terms of TP and FP; however, it has a significantly larger L1 and L2 losses than LAMP.

5.5 Poisson and probit
We simulate from the Poisson regression model with n = 200, p = 5000, 𝛼 = −1, 𝜷 = (.7, .6, .5, .4, .3, .2, .1, 0T

4993)
T , and

x ∼ N(0,Σ), where Σi, j = 𝜌+ (1− 𝜌)1i= j with 𝜌 = 0.5. For probit regression, we simulate x the same way and set 𝛼 = 0 and
𝜷 = (3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, , 0T

4988)
T .

The results for Poisson regression and probit regression are summarized in Tables 4 and 5, respectively. For Pois-
son regression, it is clear that by using Poisson penalty, we have the smallest L1 and L2 losses. SCAD and MCP are a
bit too aggressive in the sense that they miss many weak signals. For the probit model, we observe similar results as
the ultra-high-dimensional logistic regression model, with Probit penalty having a competitive performance over all the
criteria we considered.

TABLE 3 Model selection and estimation results for different
penalties over 100 repetitions. Mean values are presented with the
standard error in parentheses

Penalties TP FP L1 L2

LASSO 7.62(0.10) 1.29(0.13) 6.81(0.03) 5.19(0.05)
Sigmoid 5.50(0.07) 3.52(0.25) 5.73(0.07) 3.50(0.09)
SCAD 4.68(0.07) 3.65(0.18) 13.20(0.44) 15.12(0.93)
MCP 4.69(0.07) 4.18(0.16) 14.57(0.39) 17.73(0.93)

Abbreviations: MCP, minimax concave penalty; SCAD, smoothly clipped
absolute deviation.

TABLE 4 Model selection and estimation results for different
penalties over 100 repetitions under Poisson regression. Mean
values are presented with the standard error in parentheses

TP FP L1 L2

LASSO 5.61(0.08) 9.78(0.44) 2.04(0.03) 0.69(0.02)
Poisson 5.60(0.07) 9.24(0.50) 1.83(0.03) 0.53(0.02)
SCAD 3.31(0.07) 3.78(0.21) 2.97(0.09) 1.01(0.05)
MCP 3.30(0.07) 7.53(1.04) 5.05(0.65) 3.03(0.79)

Abbreviations: MCP, minimax concave penalty; SCAD, smoothly clipped
absolute deviation.

TABLE 5 Model selection and estimation results for different
penalties over 100 repetitions under probit regression. Mean
values are presented with the standard error in parentheses

TP FP L1 L2

LASSO 6.37(0.11) 1.00(0.12) 9.13(0.02) 11.72(0.05)
Probit 5.67(0.12) 1.41(0.15) 8.44(0.03) 9.65(0.09)
SCAD 3.89(0.07) 1.52(0.10) 8.87(0.24) 8.11(0.44)
MCP 3.91(0.07) 1.59(0.12) 9.54(0.43) 10.42(1.48)

Abbreviations: MCP, minimax concave penalty; SCAD, smoothly clipped
absolute deviation.
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TABLE 6 Classification errors of lung cancer data

Penalties 𝝀0/𝜸 Training Error Test Error Number of Selected Genes

LASSO — 0/32 7/149 15
SCAD (3∼6) 0/32 6/149 13
MCP (3∼6) 0/32 7/149 3
Sigmoid (.022∼0.03) 0/32 7/149 3
Sigmoid (.021) 0/32 6/149 5

Abbreviations: MCP, minimax concave penalty; SCAD, smoothly clipped absolute deviation.

TABLE 7 Classification errors of prostate cancer data

Penalties 𝝀0/𝜸 Training Error Test Error Number of Selected Genes

LASSO — 0/102 2/34 30
SCAD (20∼25) 0/102 2/34 26
MCP (35∼50) 0/102 2/34 24
Sigmoid (.001) 0/102 1/34 26
Sigmoid (.002) 0/102 2/34 23

Abbreviations: MCP, minimax concave penalty; SCAD, smoothly clipped absolute deviation.

5.6 Examples
We apply the proposed LAMP to 2 gene expression data sets: lung cancer data35 and prostate cancer data.36 The 2 data sets
are available at http://www.chestsurg.org and http://www.broad.mit.edu. The response variable in each data set is binary.

We aim to use the lung cancer data to classify malignant pleural mesothelioma from adenocarcinoma of the lung. The
data consist of 181 tissue samples, 32 of them for training and the remaining 149 for testing. Each sample is described by
12 533 genes.

First, the predictors are standardized into mean zero and variance one. We then apply LASSO, SCAD, MCP, and the
sigmoid penalty using glmnet for LASSO and ncvreg for SCAD and MCP. For each method, a 10-fold CV is used to select
the best 𝜆. We repeat 10 times to make different divisions to calculate the CV error. For SCAD and MCP, we evaluate the
performance when 𝛾 ∈ [3, 6], whereas for sigmoid penalty, 𝜆0 ∈ (.005, 0.03). The results are summarized in Table 6. The
result for sigmoid penalty is quite similar to MCP when 𝜆0 ∈ (.022, 0.03). When 𝜆0 = 0.021, we have 6 test errors with
only 5 genes selected, which is better compared with SCAD.

For prostate cancer data, the goal is to classify prostate tumor samples from the normal samples. There are 102 patient
samples for training, and 34 patient samples for testing with 12 600 genes in total. The result are reported in Table 7. Here,
we see the test errors are similar across methods, although the sigmoid penalty leads to the most sparse solution.

6 DISCUSSION

Penalty-based regularization methods have received much attention in recent years. This paper proposes a family of
penalty functions (ie, LAMP) that is adaptive and specific to the shapes of the log-likelihood functions. The proposed
LAMP family is different from the well-known LASSO, SCAD, and MCP. It can be argued that the new approach provides
a good balance between sparsity and stability, the 2 important aspects in model selection. It is shown that the result-
ing penalized estimation achieves model selection consistency and strong asymptotic stability, in addition to the usual
consistency and asymptotic normality.

An important issue is how to choose the 3 parameters imbedded in a LAMP. The “location” parameter 𝛼1 can be chosen
in an obvious way for the standard generalized linear models, whereas 𝜆, which represents the penalty level, can be
chosen through standard CV, the modified CV,37,38 or information criteria. For 𝜆0, which controls the concavity level, it
is computationally intensive to use CV. It is desirable to develop more effective ways to select 𝜆0. It is also important to
study another type of asymptotic stability, ie, the stability of the solution path.

When there are weak signals, we have shown that the LAMP-based estimators could miss some of the weak signals. To
address this issue, there is a recent surge of interest in the post model selection shrinkage estimation.39 It is vital to study
the corresponding results using the LAMP penalized estimators.

http://www.chestsurg.org
http://www.broad.mit.edu
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Another interesting future work is to generalize the current family of penalties to the Cox model. As the partial likeli-
hood of the Cox model could not be written in the form of (1), we need to develop some other family of penalty functions
that is adaptive to the Cox model.
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APPENDIX A : GENERAL RESULTS

We first state a general result about estimation consistency, model selection consistency, and asymptotic normality.
Consider the penalized log-likelihood function

l̃(𝜷) = l(𝜷) − n
𝑝∑

𝑗=1
𝑝𝜆, 𝑗

(|𝛽𝑗|) ,
where we assume that l is a smooth function. Let V i = (X i,Yi)

i.i.d.∼ 𝑓 (V , 𝛽) be observations with a common support,
i = 1, … ,n. Regularity conditions on the identifiable model are satisfied (see the work of Fan and Li11).

• E𝜷[𝜕 log 𝑓 (V , 𝜷)∕𝜕𝛽𝑗] = 0,

E𝜷

[
𝜕 log𝑓 (V , 𝜷)

𝜕𝛽𝑗

𝜕 log𝑓 (V ,𝜷)
𝜕𝛽k

]
= E𝜷

[
𝜕2 log𝑓 (V , 𝜷)

𝜕𝛽𝑗𝜕𝛽k

]
,

where j, k = 1, 2, … , p.
•

0 < E
[
𝜕 log𝑓 (V ,𝜷)

𝜕𝜷
|𝜷=𝜷0

]⊗2

< ∞.

• ∃ functions Mjkl, a neighborhood w of 𝜷0 such that for almost all V and any 𝜷 ∈ w, the third derivatives
𝜕f(V, 𝜷)∕(𝜕𝛽 j𝜕𝛽k𝜕𝛽 l) exists, and |||||𝜕

3 log 𝑓 (V , 𝜷)
𝜕𝛽𝑗𝜕𝛽k𝜕𝛽l

||||| ≤ M𝑗kl(V ),

for any j, k, and l.

Next let 𝜷10 = (𝛽1,0, … , 𝛽q,0)T be the nonzero true parameters of 𝜷0 = (𝛽1,0, … , 𝛽𝑝,0)T , whereas 𝜷20 =
(𝛽(q+1),0, … , 𝛽𝑝,0)T ; q and p are fixed as n changes. Let

m = min
1≤i≤q

||𝛽i,0|| ;M = max
1≤i≤q

||𝛽i,0|| .
For convenience, we define the following notations:

𝑝1,n ≜ sup
𝜃∈[m,M],1≤ 𝑗≤q

|||𝑝′𝜆, 𝑗(𝜃)||| ; 𝑝2,n(𝜃) ≜ inf
q<𝑗≤𝑝

𝑝′
𝜆, 𝑗

(𝜃); 𝑝2,n ≜ 𝑝2,n(0)

𝑝3,n(𝜃) ≜ sup
𝛽∈(0,𝜃),q<𝑗≤𝑝

|||𝑝′′𝜆, 𝑗(𝛽)||| ; 𝑝4,n ≜ sup
𝜃∈[m,M],1≤𝑗≤q

|||𝑝′′𝜆, 𝑗(𝜃)||| ;
𝑝5,n ≜ inf

𝜃∈[m,M],1≤ 𝑗≤q
𝑝′′
𝜆, 𝑗

(𝜃); Σ1 = diag
{
𝑝′′
𝜆,1(|𝛽10|), … , 𝑝′′

𝜆,q(|𝛽q0|)} ;

b =
(
𝑝′
𝜆,1 (|𝛽10|)sgn(𝛽10), … , 𝑝′

𝜆,q
(|𝛽q0|)sgn(𝛽q0)

)T
;

 =
(
11 12
21 22

)
is the Fisher information matrix at 𝜷0 partitioned by the zero and nonzero part.
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Lemma 4. Suppose −l(𝜷) and −El(𝜷) are both strictly convex for 𝜷 ∈ Θ; p𝜆,j, j = 1, … , p are p functions: [0,+∞) →
[0,+∞), continuous at 0. There exist (𝜖(k)n )n < m, k = 1, 2, n− 1

2 ∨ 𝑝1,n = o(𝜖(1)n ), such that the kth derivative of p𝜆,j(𝜃) exists
and is continuous for 𝜃 ∈ (0, 𝜖(k)n )

⋃
[m,M], and

𝑝𝜆,𝑗(𝜃) ≥ 0,∀1 ≤ 𝑗 ≤ 𝑝, 𝜃 > 0; 𝑝𝜆,𝑗(0) = 0.

𝑝′
𝜆,𝑗
(0) ≜ 𝑝′

𝜆,𝑗
(0+) ∈ R̄ = [−∞,+∞], 𝑝′′

𝜆,𝑗
(0) ≜ 𝑝′′

𝜆,𝑗
(0+) ∈ R̄ = [−∞,+∞].

Then, we have the following results.

1. (Parameter estimation consistency) If either of the following 2 conditions holds, there exists a consistent local
maximizer �̂�n.

(1.a) p1,n → 0, p4,n → 0.
(1.b) p1,n → 0, lim n𝑝5,n > 0.

2. (Model selection consistency) If any of the following 3 conditions holds, any consistent local maximizer (eg, the one
specified in 1) will be model selection consistent.

(2.a)

𝑝2,n > 0,
√

n𝑝2,n → ∞,
𝑝2,n

𝑝1,n
→ ∞.

For any un = O(𝑝1,n + 1√
n
), p2,n = O( p2,n(un)) < ∞.

(2.b)

𝑝2,n > 0,
√

n𝑝2,n → ∞,
𝑝2,n

𝑝1,n
→ C, where 0 < C < ∞, ||21

−1
11 ||∞ < C;

𝜖
(1)
n = 𝜖

(2)
n , 𝑝3,n

(
𝜖
(2)
n

)
+ 𝑝4,n → 0.

(2.c)

𝑝2,n > 0; for any un = O
(
𝑝1,n + 1∕

√
n
)
,
√

n𝑝2,n(un) → ∞,
𝑝2,n(un)
𝑝1,n

→ ∞.

3. (Asymptotic normality) Assume that the estimator has the model selection consistency stated in 2. If in addition√
n𝑝1,n → 0, we have the asymptotic normality for the nonzero part of the estimator �̂�n = (�̂�T

1 , �̂�
T
2 )T as follows:√

n(11 + Σ1)
{
�̂�1 − 𝜷10 + (11 + Σ1)−1b

}
→ N(0,11).

Remark 12. In this lemma, we intend to include as many penalties as possible, such as LASSO, SCAD, MCP, adaptive
LASSO, hard thresholding, bridge, and the LAMP family. Notice that the conditions on smoothness are weaker com-
pared with conditions in the work of Fan and Li.11 Conditions (2.a), (2.b), and (2.c) are for SCAD(MCP), LASSO, and
bridge penalty, respectively.

Remark 13. �̂�n will not have the mode selection consistency if

lim
n

√
n𝑝2,n < ∞, 𝑝3,n + 𝑝4,n → 0.

APPENDIX B : CONDITIONS

The following conditions are needed for the weak oracle property described in Remark 11. DefineG1 and G2 and set 
as follows:

G1(𝜽) ≜ (𝛼, I𝛽1≠0, I𝛽2≠0, … , I𝛽𝑝≠0)T ,

G2(𝜽) ≜ (𝛼, I𝛽1≠0𝛽1, I𝛽2≠0𝛽2, … , I𝛽𝑝≠0𝛽𝑝)T ,

 ≜ {𝜽|max (‖G2(𝜽) − G2(𝜽0)‖∞) < 0.5mn} .
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(B1)

mn ≥ 2n−𝛾1 log(n),where 0 < 𝛾1 ≤ 0.5;

qn = O(n𝛾2),where 0 < 𝛾2 < 1.

(B2) ‖‖21
−1
11
‖‖∞ = O(n𝛾3),where 0 ≤ 𝛾3 ≤ .5.

(B3)
log(𝑝n) = O(n1−2𝛾4), 𝜆 ≫ n−𝛾4

(
log(n)

)2
,

where 𝛾4 = min(0.5, 2𝛾1 − 𝛾2) − 𝛾3 ≥ 0.
(B4)

𝜆0 = o
(
min
𝜽∈

𝜆min

[ 1
n

G1(𝜽)TTdiag
(
g′′ (XG2(𝜽))

)
G1(𝜽)

])
.

(B5)

max
𝑗=1,… ,𝑝

𝜽∈

{
𝜆max

[
G1(𝜽)TT diag

i=1,2,… ,n

(|||Xi𝑗g
′′ (XT

i G2(𝜽)
)|||)G1(𝜽)

]}
= O(n).

(B6) ‖‖−1
11
‖‖∞ = O(𝛾5),where 𝛾5 = o

(
min

[
n0.5−𝛾1

√
log(n), q−1

n n𝛾1∕ log(n)
])

;

‖‖21
−1
11
‖‖∞ <

g′(𝛼1)
g′

[
(2𝜆)−1𝜆0mn + 𝛼1

] .
(B7)

𝜆g′
(
𝜆0

2𝜆
mn + 𝛼1

)
= o

(
𝛾−1

5 n−𝛾1 log(n)
)
.

(B8) If Y ∈ [c, d] is bounded, for any a ∈ Rn and 𝜖 > 0,

P
(||aTY − aTg′(XT𝜽0)|| > ||a||2𝜖

)
≤ 2e−c1𝜖

2
,

where c1 = 2(d − c)−2.
(B9) If Y is unbounded, there exists v0,M0 > 0,

E
{

exp
[

T(Y ) − g′(XT𝜽0)
M0

]
− 1 −

T(Y ) − g′(XT𝜽0)
M0

}
M2

0 ≤
v0

2
.

(B10) If Y is unbounded,

∀a ∈ R
n, 0 < 𝜖 ≤

||a||2||a||∞ ,P
(||aTy − aTg′(XT𝜽0)|| > ||a||2𝜖

)
≤ 2e−c2𝜖

2
,

where c2 = 1
2v0 + 2M0

; max
𝑗

‖‖(X1𝑗 , … ,Xn𝑗)‖‖∞ = o
(

n𝛾4∕
√

log(n)
)
.

APPENDIX C : PROOFS

Proof of Lemma 1. For any 𝜖 > 0, we have 1 and 2 with ||i||∕√n < 𝜖. Now, select

ui,n ∈ arglmin
𝜽

Mn(n + i,𝜽), i = 1, 2.

Denote function
𝑓i(u) = mn(n + i,u), i = 1, 2.

Throughout the proof, o(1) indicates a sequence that approaches 0 as n → ∞ and 𝜖 → 0 simultaneously, o(1,n) that
approaches 0 as n → ∞, o(1, 𝜖;n) that approaches 0 as 𝜖 → 0 with n fixed, and Op(1,n) bounded by a square integrable
function in probability with n → ∞.

First, from Condition (C2),

sup
u∈Θ

|𝑓2(u) − 𝑓1(u)| = sup
u∈Θ

|mn(n + 1,u) − mn(n + 2,u)|||1 − 2||d∕
√

n
||1 − 2||d∕

√
n

= O𝑝(1,n)o(1, 𝜖;n).
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Similarly, we have
sup
u∈Θ

|mn(n,u) − 𝑓1(u)| = O𝑝(1)o(1, 𝜖;n).

Second, from Condition (C1), fi(u) is convex, i = 1, 2. We will prove that

∀0 ≤ r ≤ 1, 𝑓i
(

u′
2,n

)
≥ 𝑓i(ui,n) + o𝑝(1,n), i = 1, 2, (C1)

where u′
2,n = ru1,n + (1 − r)u2,n. Since u1,n is the local minimum of f1(u) + rn(u), there exists 0 < 𝜎1,n < 1, such that

𝑓1(u1,n) + rn(u1,n) − rn
(

u1,n + 𝜎1,n
(

u′
2,n − u1,n

))
≤ 𝑓1

(
u1,n + 𝜎1,n

(
u′

2,n − u1,n
))

= 𝑓1
(
𝜎1,nu′

2,n + (1 − 𝜎1,n)u1,n
)

≤ 𝜎1,n𝑓1
(

u′
2,n

)
+ (1 − 𝜎1,n)𝑓1(u1,n).

After the simplification, we have

𝑓1
(

u′
2,n

)
≥ 𝑓1(u1,n) −

rn

(
u1,n + 𝜎1,n

(
u′

2,n − u1,n

))
− rn(u1,n)

𝜎1,n
‖‖‖u′

2,n − u1,n
‖‖‖

‖‖‖u′
2,n − u1,n

‖‖‖ .
Therefore, we have 𝑓1(u′

2,n) ≥ 𝑓1(u1,n) + o𝑝(1,n) from Condition (C3).
Third, Emn(n,u′

2,n) − mn(n,u′
2,n) = o𝑝(1,n) from the law of large number.

Note that

m̄
(

u′
2,n

)
− m̄(u1,n) = Emn

(
n,u′

2,n
)
− Emn(n,u1,n)

=
[
Emn

(
n,u′

2,n
)
− mn

(
n,u′

2,n
)]

+
[
mn

(
n,u′

2,n
)
− 𝑓2

(
u′

2,n
)]

−
[
Emn(n,u1,n) − mn(n,u1,n)

]
−

[
mn(n,u1,n) − 𝑓1(u1,n)

]
+

[
𝑓2

(
u′

2,n
)
− 𝑓1

(
u′

2,n
)]

+
[
𝑓1

(
u′

2,n
)
− 𝑓1(u1,n)

]
≥ o𝑝(1,n) + o(1, 𝜖;n)O𝑝(1,n) ≜ o𝑝(1, 𝜖,n),

which is the same as
lim

n→∞
P
(
lim
𝜖→0

m̄
(

u′
2,n

)
− m̄(u1,n) < −𝛿

)
= 0,∀𝛿 > 0.

Similarly,
lim

n→∞
P
(
lim
𝜖→0

m̄
(

u′
2,n

)
− m̄(u2,n) < −𝛿

)
= 0,∀𝛿 > 0.

Combine these 2 together, and we have

lim
n→∞

P
(
lim
𝜖→0

m̄
(

u′
2,n

)
−

[
rm̄(u1,n) + (1 − r)m̄(u2,n)

]
< −𝛿

)
= 0,∀𝛿 > 0, 0 ≤ r ≤ 1.

Define

Δ(u1,u2) ≜ max
0≤r≤1

rm̄(u1) + (1 − r)m̄(u2) − m̄ (ru1 + (1 − r)u2) ;

C𝛿 = inf {C ≥ 0|∀u1,u2 ∈ Θ and ||u1 − u2|| ≥ C,Δ(u1,u2) > 𝛿} .

Since Θ is a compact set, C𝛿 exists for any 𝛿 > 0; since m̄ is strictly convex, C𝛿 → 0, as 𝛿 → 0. We then conclude that

lim
n→∞

P
(
lim
𝜖→0

||u1,n − u2,n|| > C𝛿

)
= 0,∀C𝛿 > 0.

Proof of Lemma 2. From Condition (C2),

sup
𝜆∈[0,1]

𝜽i∈Θ,i=1,2

{[𝜆Mn(n + n,𝜽1) + (1 − 𝜆)Mn(n + n,𝜽2) − Mn (n + n, 𝜆𝜽1 + (1 − 𝜆)𝜽2)]

− [𝜆Mn(n + n,𝜽1) + (1 − 𝜆)Mn(n + n,𝜽2) − Mn (n + n, 𝜆𝜽1 + (1 − 𝜆)𝜽2)]}
= O𝑝(1,n)o(1, 𝜖;n).

From Condition (C5), there exists 𝜖0 > 0, such that ∀||n|| ≤ √
n𝜖0,

lim
n→∞

P (Mn(n + n,𝜽) is strictly convex within o(𝜽0, 𝛿0) ∩ Θ) = 1.
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From weak asymptotic stability and consistency in (C4),

lim
n→∞

P

⎛⎜⎜⎜⎜⎝
lim
𝜖→0

diam
⋃

||||<√n𝜖
n+n∈Sn

{
arglminMn(n + n,𝜽)

}
> 𝛿0∕2

⎞⎟⎟⎟⎟⎠
= 0,

lim
n→∞

P

⎛⎜⎜⎜⎜⎝
lim
𝜖→0

d

⎛⎜⎜⎜⎜⎝
𝜽0,

⋃
||||<√n𝜖
n+n∈Sn

{
arglminMn(n + n,𝜽)

}⎞⎟⎟⎟⎟⎠
> 𝛿0∕2

⎞⎟⎟⎟⎟⎠
= 0,

then

lim
n→∞

P

⎛⎜⎜⎜⎜⎝
lim
𝜖→0

⋃
||n||<√n𝜖
n+n∈Sn

{
arglminMn(n + n,𝜽)

}
∈ o(𝜽0, 𝛿0)

⎞⎟⎟⎟⎟⎠
= 1. (C2)

Denote �̃� and 𝜽∗ the minimizer of Mn(n + n,𝜽) and Mn(n,𝜽) for 𝜽 ∈ o(𝜽0, 𝛿0) ∩ Θ, respectively. We have

0 ≥ Mn(n,𝜽
∗) − Mn(n, �̃�)

= Mn(n + n,𝜽
∗) − Mn(n + n, �̃�) + O𝑝(1)o(1, 𝜖;n)

≥ O𝑝(1)o(1, 𝜖;n).

Then, the strict convexity of Mn(n + n,𝜽) together with the case

lim
𝜖→0

⋃
||n||<√n𝜖
n+n∈Sn

{
arglminMn(n + n,𝜽)

}
∈ o(𝜽0, 𝛿0)

implies
lim
𝜖→0

⋃
||n||<√n𝜖
n+n∈Sn

{
arglminMn(n + n,𝜽)

}
∈ o(𝜽0, 𝛿0) = 𝜽∗,

which means that

lim
n→∞

P

⎛⎜⎜⎜⎜⎝
lim
𝜖→0

diam
⋃

||n||<√n𝜖
n+n∈Sn

{
arglminMn(n + n,𝜽)

}
= 0

⎞⎟⎟⎟⎟⎠
= 1.

Proof of Lemma 3. First, it is obvious that 𝜆 → 0 and
√

n𝜆 → +∞.√
n𝜆e

(
𝜆0
𝜆

m−𝛼1

)u
L
(

𝜆0
𝜆

m−𝛼1

)
→ 0 ⇐⇒ log

(√
n𝜆

)
+

(
𝜆0

𝜆
m − 𝛼1

)u

L
(
𝜆0

𝜆
m − 𝛼1

)
→ −∞

⇐= log
(√

n𝜆
)
≪

(
𝜆0

𝜆

)u

L
(
𝜆0

𝜆

)
⇐= log

(√
n𝜆

)
≪

(
𝜆0

𝜆

)u

⇐⇒ 𝜆

[
log

(√
n𝜆

)]1∕u
≪ 𝜆0

⇐= 𝜆(log n)1∕u ≪ 𝜆0,

where m is assumed to be fixed.
Proof of Lemma 4. Part 1 (Parameter estimation consistency).
It is sufficient to show that for any given 𝜖 > 0, there exists a positive constant C, such that

P
(

sup||u||=C
l̃
(
𝜷0 + u

(
n− 1

2 + 𝑝1,n

))
− l̃(𝜷0) < 0

)
> 1 − 𝜖.
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Then, there exists a local maximizer �̂� = (𝛽1, … , 𝛽𝑝) such that ||�̂� −𝜷0|| = O𝑝(𝛼n), where 𝛼n = n− 1
2 +𝑝1,n. Consistency

holds as p1,n → 0.
Using Taylor expansion, we have

l̃
(
𝜷0 +

(
n− 1

2 + 𝑝1,n

)
u
)
− l̃(𝜷0)

= l
(
𝜷0 +

(
n− 1

2 + 𝑝1,n

)
u
)
− l(𝜷0) − n

𝑝∑
𝑗=1

[
𝑝𝜆,𝑗

(|||𝛽𝑗0 + (n− 1
2 + 𝑝1,n)u𝑗

|||) − 𝑝𝜆,𝑗
(|𝛽𝑗0|)]

≤ l
(
𝜷0 +

(
n− 1

2 + 𝑝1,n

)
u
)
− l(𝜷0) − n

q∑
𝑗=1

[
𝑝𝜆,𝑗

(||||𝛽𝑗0 +
(

n− 1
2 + 𝑝1,n

)
u𝑗

||||
)
− 𝑝𝜆,𝑗

(|𝛽𝑗0|)]
=

(
n− 1

2 + 𝑝1,n

)
uTl′(𝜷0) −

1
2

nuTu
(

n− 1
2 + 𝑝1,n

)2 (
1 + o𝑝(1)

)
(C3)

− n
q∑

𝑗=1

[
𝑝′
𝜆,𝑗

(|𝛽𝑗,0|) sgn(𝛽𝑗0)
(

n− 1
2 + 𝑝1,n

)
u𝑗 +

1
2
𝑝′′
𝜆,𝑗
(r𝑗)

(
n− 1

2 + 𝑝1,n

)2
u2
𝑗

]
,

where

|𝛽𝑗,0| ≤ r𝑗 ≤ |𝛽𝑗,0| + (
n− 1

2 + 𝑝1,n

)
C, = −E 1

n
𝜕2l(𝜷)
𝜕𝜷T𝜕𝜷

|||||𝜷=𝜷0

> 0.

We now analyze the order of the 4 terms in (C3). For Condition (1.a), the first term is of the order 1+n
1
2 𝑝1,n, whereas

the second term is of the order (1 + n
1
2 𝑝1,n)2, which is of the same or higher order compared with the first term. Using

Cauchy inequality,

n
q∑

𝑗=1
𝑝′
𝜆,𝑗

(|𝛽𝑗0|) sgn(𝛽𝑗0)
(

n− 1
2 + 𝑝1,n

)
u𝑗 ≤ n

√
q𝑝1,n

(
n− 1

2 + 𝑝1,n

) ||u||.
For fixed q, it is also of the same or a smaller order compared with the second term. When p4,n → 0, 𝑝′′

𝜆,𝑗
(·) in the fourth

term vanishes, it is also controlled by the second term. Regarding the constant involving u, the second term contains||u||2, whereas both the first and third has ||u||. Thus, the whole expression is controlled by its second term as long as
we choose a sufficiently large C since  is positive definite.

For Condition (1.b), the fourth term is negative and of the same sign as the second term. The conclusion still holds.
Part 2 (Model selection consistency). Now, we have an 𝛼n-consistent local minimizer �̂�n. If the model selection con-

sistency does not hold, there exists a j ∈ {q + 1, q + 2, … , p} such that 𝛽𝑗 ≠ 0, then there is contradiction if we can
show that there exists a small enough 𝜖n ≪ 𝛼n, and a neighborhood O(𝛽𝑗, 𝜖n), within which the sign of 𝜕l̃(𝜷)

𝜕𝛽𝑗
does not

change. If 𝛽𝑗 is the optimum solution, the sign of left derivative at the optimal value should be different from the sign
of right derivative at the optimal value. Therefore, the nonzero 𝛽𝑗 does not exist. Using Taylor's expansion,

𝜕l̃(𝜷)
𝜕𝛽𝑗

=
𝜕l(𝜷0)
𝜕𝛽𝑗

+
𝑝∑

l=1

𝜕2l(𝜷0)
𝜕𝛽l𝜕𝛽𝑗

(𝛽l − 𝛽l0)
(
1 + o𝑝(1)

)
− n𝑝′

𝜆,𝑗

(|𝛽𝑗|) sgn(𝛽𝑗), (C4)

for j = q+1, q+2, … , p. We see that the third term of (C4) does not depend on 𝜷0 and is only related to the sign of 𝛽 j,
which remains constant in O(𝛽𝑗, 𝜖n) since 𝛽𝑗 ≠ 0. Therefore, if the first 2 terms are controlled by the third one, we can
derive the sparsity using the method above. The coefficient of the sign function in the third term should be positive
to control the direction of the derivative. That is, infq<𝑗≤𝑝𝑝

′
𝜆,𝑗
(0) > 0.

For Condition (2.a), the orders of the 3 term are
√

n,
√

n+n𝑝1,n, 𝑝2,n(un), where un is the sequence in Condition (2.a).
Condition (2.a) guarantees that the first 2 terms are controlled by the third one. Condition (2.c) will lead to the same
reasoning.

For Condition (2.b), we can first prove

�̂� − 𝜷0

𝑝1,n

𝑝

−−−−→ argmin
v

1
2

vvT +
q∑

𝑗=1
sgn(𝛽𝑗0)

𝑝′
𝜆,𝑗

(|𝛽𝑗0|)
𝑝1,n

× v𝑗 +
𝑝∑

𝑗=q+1

𝑝′
𝜆,𝑗
(0)

𝑝1,n
× |v𝑗|.

(similarly, see the work of Knight and Fu40) Applying Karush-Kuhn-Tucker conditions to

�̂�2 − 𝜷2,0

𝑝1,n

𝑝

−−−−→0,
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which is weaker than sparsity, we get the necessary condition 21
−1
11 𝚲1a + 𝚲2z = 0, where

𝚲1 = 𝑝−1
1,ndiag

{
𝑝′
𝜆,1 (|𝛽10|) , 𝑝′𝜆,2 (|𝛽20|) , … , 𝑝′

𝜆,q
(|𝛽q0|)} ,

𝚲2 = 𝑝−1
1,ndiag

{
𝑝′
𝜆,q+1(0), 𝑝

′
𝜆,q+2(0), … , 𝑝′

𝜆,𝑝
(0)

}
,

a = sgn(𝜷1,0) and |z| ≤ 1, which is equivalent to 𝚲−1
2 21

−1
11 𝚲1a ≤ 1. We will show that a sufficient condition is‖‖𝚲−1

2 21
−1
11 𝚲1‖‖∞ < 1,

or equivalently, ‖‖21
−1
11
‖‖∞ <

(‖‖𝚲−1
2
‖‖∞||𝚲1||∞)−1

→ C.

Then, it will be obvious that the first 2 terms are controlled by the third one. Let

vn =
�̂� − 𝜷0

𝑝1,n
= argmax

v
l̃(𝜷0 + 𝑝1,nv).

Then, from 𝑝3,n(𝜖(2)n ) → 0, we have supq<𝑗≤𝑝|𝑝′𝜆,𝑗(0)|< ∞ and

∀un → 0, 𝑝2,n (|un|) = 𝑝2,n + o(1). (C5)

Together with p4,n → 0,

l̃(𝜷0 + 𝑝1,nv) = l̃(𝜷0) + 𝑝1,nvT 𝜕l(𝜷0)
𝜕𝜷

+ 1
2
𝑝2

1,nvT 𝜕
2l(𝜷0)
𝜕𝜷T𝜕𝜷

v
(
1 + o𝑝(1)

)
− n𝑝2

1,n (1 + o(1))
𝑝∑

𝑗=1

[
sgn(𝜷𝑗0)v𝑗

𝑝′
𝜆,𝑗

(|𝛽𝑗0|)
𝑝1,n

I𝛽𝑗0≠0 +
𝑝′
𝜆,𝑗

(|𝛽𝑗0|)
𝑝1,n

|v𝑗|I𝛽𝑗0=0

]

= l̃(𝜷0) + n𝑝2
1,n ×

{
−1

2
vvT −

q∑
𝑗=1

sgn(𝛽𝑗0)
𝑝′
𝜆,𝑗

(|𝛽𝑗0|)
𝑝1,n

× v𝑗 −
𝑝∑

𝑗=q+1

𝑝′
𝜆,𝑗
(0)

𝑝1,n
× |v𝑗|}(

1 + o𝑝(1)
)
.

Following the work of Geyer,41 we get

vn
𝑝

−−→ argmin
v

{
1
2

vvT +
q∑

𝑗=1
sgn(𝛽𝑗0)

𝑝′
𝜆,𝑗

(|𝛽𝑗0|)
𝑝1,n

× v𝑗 +
𝑝∑

𝑗=q+1

𝑝′
𝜆,𝑗
(0)

𝑝1,n
× |v𝑗|} .

Let vn ≜ (vT
1,n, vT

2,n)
T , where vT

1,n is a q × 1 vector. We see that v2,n → v2 = 0 in probability is a necessary condition for
sparsity. From conclusions above,(

vT
1,n, vT

2,n
)
→ argmin

v1,v2

1
2
(

vT
111v1 + 2vT

221v1 + vT
222v2

)
+ vT

1𝚲1a + ||vT
2
||𝚲21. (C6)

Karush-Kuhn-Tucker conditions lead to the following equations:

11v1 +12v2 + 𝚲1a = 0,
21v1 +22v2 + 𝚲2z = 0,

where z = (z1, … , zp−q)T and
z𝑗 ∈

{
z|if vq+𝑗 ≠ 0, z = sgn(vq+𝑗); else |z| ≤ 1

}
.

Then,

v2 = 0 ⇐⇒ 21
−1
11 𝚲1a + 𝚲2z = 0, |z| ≤ 1

⇐⇒ ||𝚲−1
2 21

−1
11 𝚲1a|| ≤ 1,

which is a necessary condition for sparsity. Now, let

𝚲2(v2) ≜ 𝑝−1
1,ndiag

{
𝑝′
𝜆,q+1(vq+1), 𝑝′𝜆,q+2(vq+2), … , 𝑝′

𝜆,𝑝
(v𝑝)

}
.

Then, √
n𝜆 → ∞,

𝜕l̃(𝜷)
𝜕𝜷2

= n𝑝1,n

[
(21,22)

(
vT

1 , vT
2
)T (

1 + o𝑝(1)
)
− 𝚲2(v2)sgn(𝛽2)

]
.
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From (C5), 𝚲2(v2) = 𝚲2 + o(1). Therefore, a sufficient condition for sparsity is that (21,22)(vT
1 , vT

2 )
T is controlled by

𝚲2 coordinate wisely. That is,

21
−1
11 𝚲1a + 𝚲2z = 0, |z| < 1

⇐= ||𝚲−1
2 21

−1
11 𝚲1a|| < 1

⇐= ‖‖21
−1
11
‖‖∞ <

(‖‖𝚲−1
2
‖‖∞||𝚲1||∞)−1

→ C.

Part 3 (Asymptotic normality and oracle property). Suppose �̂� = (�̂�1, 0)T is the maximizer. Using parameter
estimation consistency and model selection consistency property, for j = 1, 2, … , q,

0 =
𝜕l̃(�̂�)
𝜕𝛽𝑗

=
𝜕l(�̂�)
𝜕𝛽𝑗

− n𝑝′
𝜆,𝑗

(|𝛽𝑗|) sgn
(|𝛽𝑗|)

=
𝜕l(𝜷0)
𝜕𝛽𝑗

+
q∑

i=1

(
𝜕2l(𝜷0)
𝜕𝛽𝑗𝜕𝛽i

)
(𝛽i − 𝛽i0)

(
1 + o𝑝(1)

)
− n𝑝′

𝜆,𝑗

(|𝛽𝑗0|) sgn(𝛽𝑗0) − n𝑝′′
𝜆,𝑗

(|𝛽𝑗|) (𝛽𝑗 − 𝛽𝑗0)
(
1 + o𝑝(1)

)
.

Thus, √
n(11 + Σ1)

{
�̂�1 − 𝜷10 + (11 + Σ1)−1b

}
→ N(0,11).

If the order of b is controlled by 1∕
√

n, the oracle property holds.

Proof of Theorem 1. Using the notations of Lemma 4 and the form of the LAMP penalty, 𝑝1,n = 𝜆g′(𝛼1 −
𝜆0
𝜆

m)∕g′(𝛼1); 𝑝2,n = 𝜆; 𝑝2,n(un) = 𝜆g′(𝛼1 −
𝜆0
𝜆

un)∕g′(𝛼1); 𝑝3,n = 𝜆0g′′(𝛼1)∕|g′(𝛼1)|; 𝑝4,n = 𝜆0g′′(𝛼1 −
𝜆0
𝜆

m)∕|g′(𝛼1)|.
From (C6),

E ||YXT𝜽 − g(XT𝜽)|| < ∞,∀𝜽 ∈ Θ,

there exists m̄(𝜽) = −El(𝜽) such that mn(𝜽) = −ln(𝜽) → m̄(𝜽) almost surely. From

𝜆min
(
EXg′′(XT𝜽)XT) > 0,∀𝜽 ∈ Θ,

−El(𝜽) is a strictly convex function of 𝜽. Condition (C1) holds.
From smoothness of the function g and compactness of Θ, Condition (C2) holds.
From (C7), 𝜆0∕𝜆 → ∞, together with lim𝜉→∞g′(𝜉) = 0, 𝛼1 is a constant and 𝜆 → 0, we have

sup
𝜃∈Θ

𝑝′
𝜆
(𝜃) = sup

𝜃∈Θ
𝜆
g′(𝛼1 − 𝜆0∕𝜆𝜃)

g′(𝛼1)
→ 0.

Condition (C3) holds, and p1,n → 0, p4,n → 0.
From (C6)

E

[||X||2
2g

′′(XT𝜽0) + ||X||3
1 sup||𝜽−𝜽0||≤𝛿 g

′′′(XT𝜽)

]
< ∞,

regularity conditions in Lemma 4 holds.
From p1,n → 0, p4,n → 0, Condition (1.a) in Lemma 4 holds. Condition (C4) holds.
Given un = O(𝑝1,n, 1∕

√
n) from

√
n𝑝1,n → 0, we get un = O(1∕

√
n). From

√
n𝜆 → ∞, we get un∕𝜆 → 0. Together

with the smoothness of the function g, p2,n(un)∕p2,n → 1. From Condition (C7), it is obvious that

𝑝2,n > 0,
𝑝2,n

𝑝1,n
→ ∞,

√
n𝑝2,n → ∞.

Condition (2.a) and conditions for asymptotic normality in Lemma 4 hold.
In conclusion, with Conditions (C6)-(C8), the penalized maximum-likelihood estimator based on the LAMP family

is consistent and asymptotically normal and achieves model selection consistency and strong asymptotic stability.
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Proof of Theorem 2. The idea of the proof is adapted from the works of Munk et al33 and Zou and Li.28 For convenience,
we define the following notations:

Mn(𝜽) ≜ M(1)(𝜽) + M(2)(𝜽),

M(1)(𝜽) ≜ − 1
n

l(𝜽),M(2)(𝜽) ≜
𝑝∑

𝑗=1
𝑝𝜆

(|𝜃𝑗|) ,
𝜽(m) ≜

(
𝜃
(m0)
0 , 𝜃

(m1)
1 , … , 𝜃

(m𝑝)
𝑝

)T
,

𝜽
(m)
(−𝑗)(x) ≜

(
𝜃
(m0)
0 , 𝜃

(m1)
1 , … , 𝜃

(m𝑗−1)
𝑗−1 , x, 𝜃(m𝑗+1)

𝑗+1 , 𝜃
(m𝑝)
𝑝

)T
,

Q
(

x, 𝑗,𝜽(m)) ≜ a
(
𝜽
(m)
(−𝑗)(x),𝜽

(m)
)
,

𝜙
(

x, 𝑗,𝜽(m)) ≜
∑

1≤k≤𝑝
𝑝𝜆

(|||𝜃(mk)
k

|||) + 𝑝′
𝜆

(|||𝜃(m𝑗 )
𝑗

|||) (|x| − |||𝜃(m𝑗 )
𝑗

|||) ,

R
(

x, 𝑗,𝜽(m)) ≜ Q
(

x, 𝑗,𝜽(m)) + 𝜙
(

x, 𝑗,𝜽(m)) ,
where m0,m1, … ,mp are the iteration times of 𝜃0, 𝜃1, … , 𝜃p respectively and m = (m0,m1, … ,mp). From the
concavity of the penalty on the positive part, we have

M(2)
(
𝜽(m+e𝑗 )

)
≤ 𝜙

(
𝜃
(m𝑗+1)
𝑗

, 𝑗,𝜽(m)
)
,

where ej is a length-(p + 1) vector with the jth element 1 and all the others 0; from conditions of the theorem, we see

M(1)
(
𝜽(m+e𝑗 )

)
≤ Q

(
𝜃
(m𝑗 )
𝑗

, 𝑗,𝜽(m)
)
,

and
M

(
𝜽(m+e𝑗 )

)
≤ R

(
𝜃
(m𝑗+1)
𝑗

, 𝑗,𝜽(m)
)
.

In the algorithm,
𝜃
(m𝑗+1)
𝑗

= argmin𝜃R
(
𝜃, 𝑗,𝜽(m)) .

Then,

M
(
𝜽(m)) = R

(
𝜃
(m𝑗 )
𝑗

, 𝑗,𝜽(m)
)

> R
(
𝜃
(m𝑗+1)
𝑗

, 𝑗,𝜽(m)
)

≥ M
(
𝜽(m+e𝑗 )

)
.

Since function M decreases as iteration continues and has a lower bound, it converges.
By the monotonicity of M(𝜽(t)) (t represents the number of iterations), all points 𝜽(m) are in a compact set{

𝜽 ∈ |M(𝜽) ≤ M
(
𝜽(0𝑝+1)

)}
.

It is compact because function M(𝜽) is continuous and coercive. Then, there exists a convergent subsequence 𝜽(tl),
𝜽∗ ∈ , j0 ∈ {0, 1, … , p} such that

lim
l→∞

𝜽(tl) = 𝜽∗; 𝑗(tl+1) ≡ 𝑗0.

Next, denote m∗
l ≜ m(tl+1)

𝑗0
. For any v ∈ , we have

M
(
𝜽(tl+1)

)
≤ M

(
𝜽(tl+1)) ≤ R

(
𝜃
(m∗

l )
𝑗0

, 𝑗0|𝜽(tl)
)
≤ R

(
v𝑗0 , 𝑗0|𝜽(tl)

)
.

Assume M(𝜽tl+1) → M(𝜽∗) = R(𝜽∗, 𝑗|𝜽∗), 𝑗 = 0, … , 𝑝. Taking limit l → ∞ on both sides of the above equation, we have

M(𝜽∗) ≤ lim
l→∞

R
(

v𝑗0 , 𝑗0|𝜽(tl)
)
= R(v𝑗0 , 𝑗0|𝜽∗).

Thus, the subgradient of R(·, 𝑗0|𝜽∗) at 𝜽∗ is 0, which is exactly the derivative of M(𝜽) with respect to 𝜃𝑗0 at 𝜽∗, because
it can be easily verified that the smooth approximation keeps the first-order derivative the same.

From the algorithm and the definition of the “viol” function, we have

∀𝑗 ∈ {0, … , 𝑝}, |||Ṙ (
·, 𝑗|𝜽(tl)

)||| ≤ |||Ṙ (
·, 𝑗0|𝜽(tl)

)||| .
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Taking the derivative of both sides of the above equation, the subgradient of R(·, j|𝜽∗) at 𝜽∗ is 0, which is exactly the
same as the partial derivative of M(𝜽) with respect to 𝜃j at 𝜽∗,∀j ∈ {0, … , p}. From the strict convexity, 𝜽∗ is the
unique local minimum of M(𝜽).

Method 1 for logistic regression uses lemma 1 in the work of Munk et al.33 That is,

log(1 + ez) ≤ z
2
+ log

(
e−z0∕2 + ez0∕2) + 1

2
tanh(.5z0)

z0

(
z2 − z2

0
)
.
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