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estimation for high-dimensional data analysis’
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1. Strong signal, weak signal, and noise

One fundamental ingredient of our work is to formally split the signals into strong and weak ones. The rationale is that
the usual one-step method such as the least absolute shrinkage and selection operator (LASSO) may be very effective in
detecting strong signals while failing to identify some weak ones, which in turn has a significant impact on the model
fitting, as well as prediction. The discussions of both Fan and QY'Y contain very interesting comments on the separation
of the three sets of variables. Regarding Assumption (A2) about the weak signal set S,, we admit that the original version
was not as rigorous as it could have been, as it could have contained the variables in S3. We now propose the following
Assumption (A2’) that replaces (A2) in the original paper.

(A2’): The parameter vector f* satisfies that ||ﬂ;2 || ~ n® for some 0 < 7 < 1, where || - || is the £, norm and ﬁj* # 0 for
any j € S,.

QYY mentioned that in practice, it is sometimes difficult to have a subjective separation of strong and weak signals. First
of all, we would like to emphasize that the conditions imposed in the paper are from an asymptotic point of view, which
demonstrate the great performance of the proposed estimators in the specified scalings and covariance structure. Second,
we would like to argue that this separation is sometimes unnecessary in practice as the ultimate goal of high-dimensional
regression is to provide accurate predictions for future data after variable selection and insightful interpretations on the
importance of the predictors in terms of explaining the response. Third, the separation of strong and weak signals was
mainly used to stimulate the post-selection shrinkage estimation (PSE) method, and the variables identified as ‘strong’
or ‘weak’ by PSE do not necessarily have a natural separation in terms of true regression coefficients, at least for a fixed
sample size.

2. Conditions on designed matrix

We thank Fan for pointing out that the assumption on the design matrix could be strong. In fact, condition (B2) is mainly
motivated from [1], and it requires the weak signals to be correlated to strong ones, in order for it to be detectable using
the weighted ridge regression. On the other hand, condition (B4) requires that the eigenvalues of the design matrix cor-
responding to both strong and weak signals are bounded away from both 0 and infinity. Now, we describe one specific
example. Consider an n X p design matrix X = [X,,X,, X;]. X, and X, correspond to strong and weak signals, and X,
includes noises. Suppose all signals in Z = [X, X,] are correlated with constant correlation coefficient of » and uncorre-
lated with noises in X;. Then, such a design matrix satisfies both conditions (B2) and (B4). We agree that some reasonably
correlated design matrix for all variables could be excluded under those conditions.

3. MUJI variables

We thank LHL for bringing up the marginally unimportant but jointly informative (MUIJI) variable set [2], namely,
‘marginally unimportant but jointly important’ variables. Indeed, the inclusion of MUJI variables could significantly
improve the performance of the vanilla sure independence screening approach [3]. However, we would like to argue that
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Table I. Simulated results for example 1
Method MUJI (Y/N) p, =400  p, = 100,000
15,1 6 6
MSE 0.0015 0.0046
No MPE 0.0501 0.1661
LASSO-PSE RMSE 5.0701 3.1477
MSE 0.0022 0.0129
Yes MPE 0.0279 0.5374
RMSE 3.4907 1.0945
S| 3 3
MSE 0.1284 0.0196
No MPE 1.9041 0.2629
MCP-PSE RMSE 0.3456 0.6933
MSE 0.0154 0.0049
Yes MPE 0.2447 0.0755
RMSE 2.8821 2.6005
15,1 3 3
MSE 1.4339 0.1215
No MPE 20.5638 1.6907
CIS-PSE RMSE 0.0754 0.5184
MSE 0.0431 0.0151
Yes MPE 0.5850 0.3049
RMSE 2.5070 1.9322

Larger RMSE, smaller MSE, and smaller MPE indicate better performance.
CIS, Covariance Insured Screening; MPE, mean prediction error; MSE, mean
squared error; PSE, post-selection shrinkage estimation; RMSE, relative mean
squared error.

in our proposal, the estimation of §; could be done by any variable selection method that could identify the strong sig-
nals, for example, LASSO. As a result, S; could already contain the MUJI variables as it considers the joint regression on
all predictors.

Motivated by the MUJI variables, LHL proposed a new shrinkage estimator called Covariance Insured Screening-based
PSE (CIS-PSE), which uses two simulation examples to compare HD-PSE and CIS-PSE. They conclude that using MUJI
can help to improve the risk performance of the shrinkage estimator. However, the comparison could be a little unfair
because S, in CIS-PSE is generated by marginal correlation, while §; in HD-PSE is from LASSO. Thus, S, generated from
two methods can be different. To ensure a fair comparison, we let S, in the first step from both CIS-PSE and HD-PSE be
consistent. We consider different scenarios: (i) S| is selected by LASSO; (ii) S| is selected by the minimax concave penalty
(MCP); (iii) S, is selected using the marginal strong set suggested by LHL in the first step while producing CIS-PSE. For
each of those aforementioned three cases, we compute the MUII set §MU 71 as suggested by LHL and then shrinking §1 U§2 U
§MUJI in the direction of :S’\l. We define those three estimates as LASSO-PSE, MCP-PSE, and CIS-PSE, correspondingly.
We then recheck those two examples, compare their performance, and report the results in Tables I and 1T . When p, =
100,000, we apply ridge regression and keep the 500 variables with the largest absolute coefficients before applying
our algorithm.

In the tables, we report mean squared error and relative mean squared error. We also report the mean prediction error
based upon the selected subset, defined as

N % \2
E(Xglﬂgl _X'S‘] ﬂ§1) .

In Example 1 in LHL, there is strong correlation among three covariates with weak signals and three covariates with
strong signals. From the evaluation results reported in Table I, we observe that when using the MCP-PSE and CIS-PSE,
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Table II. Simulated results for example 2
Method MUJI(Y/N) p, =400 p, = 100,000
1,1 3 3
MSE 0.0018 0.0100
No MPE 0.0225 0.1594
LASSO-PSE RMSE  8.4982 4.6249
MSE 0.0067 0.0294
Yes MPE 0.0917 0.4487
RMSE  2.3025 1.5091
M 3 3
MSE 0.0018 0.0100
No MPE 0.0225 0.1594
MCP-PSE RMSE  8.4982 4.6249
MSE 0.0067 0.0294
Yes MPE 0.0917 0.4487
RMSE  2.2974 1.5091
15,1 3 3
MSE 1.2953 0.0100
No MPE 13.5683 0.1594
CIS-PSE RMSE  0.0719 4.6249
MSE 0.0262 0.0294
Yes MPE 0.3166 0.4487
RMSE  2.5238 1.5091

Larger RMSE, smaller MSE, smaller MPE indicate better performance.
CIS, Covariance Insured Screening; MPE, mean prediction error; MSE,
mean squared error; PSE, post-selection shrinkage estimation; RMSE,
relative mean squared error.

incorporating the MUJI variables improves the performance of the method as it can include additional signals from the
MUII set. However, when using LASSO-PSE, it is clear that using MUJI actually deteriorates the performance of the
method by having larger mean squared errors and smaller relative mean squared errors. This is probably because LASSO
already selects some weak signals in additional to the strong signals, which makes the MUIJI detection step unnecessary. In
Example 2 in LHL, there is strong correlation among three noise covariates and three covariates with strong signals. From
the evaluation results reported in Table II, we observe that both Lasso and MCP only select strong signals with no weak
signals. Incorporating MUJI variables deteriorates the performances of both MCP-PSE and LASSO-PSE in this case. This
is because MUIJI variables may pick up those noises in the second step. However, CIS-PSE with MUIJI variables can help
to improve the performance of the method.

From this preliminary numerical study, we can see that including MUJI variables may or may not improve the
performance of the PSE, depending on the selected submodel.

The corresponding theoretical analysis regarding when the MUIJI variables help the final estimation is an interesting
open research question.

4. About the algorithm

DF suggested to use the partial least square method in the second step to select the weak signals, as opposed to the current
weighted ridge regression. We appreciate the suggestion; however, one still needs to impose regularization on the estimates,
which would lead to a different strategy and should be of interest for further research.

QYY posed the question about the selection of the tuning parameters a, and r, in the PSE strategy. We agree that the
proposed cross-validation method, while effective in our limited numerical experience, may need further theoretical justi-
fication. Recently, [4, 5] conducted a systematic study on the cross-validation-based tuning parameter selection method for
high-dimensional penalized regression problems. Some work along similar lines could be an interesting research project. In
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addition, it is also important to develop a certain adaptive tuning parameter selection method and demonstrate its robustness
against model misspecification.

5. Future directions

This paper introduced the post-shrinkage estimation framework and used specific methods to select the strong and weak
signals. The shrinkage estimation received a lot of attention since its inception decades ago. It strikes a balance between
post-selected submodels and high-dimensional weighted ridge estimators and is proved to be an effective strategy.

There are a number of alternatives to mimick the ideas of the PSE. For example, Fan suggested a great idea involving
using the penalized least square with different penalty levels, closely related to the folded concave penalties including the
smoothly clipped absolute deviations penalty (SCAD) and MCP.

The current methodology can be extended in a host of directions, including nonparametric models (suggested by QYY),
spatially corrected data, among others. We would like to remark here that shrinkage estimation strategies have already
been applied to some nonparametric models in low-dimensional cases such as [6—8], among others that can be extended
to high-dimensional cases.

Another interesting direction would be to study the shrinkage method in robust high-dimensional data analysis, such as
M-estimation. Recently, [9, 10] proposed penalized weighted least squares and penalized weighted least absolute deviation
methods to study robust high-dimensional regression. The methods unify the M-estimation in a penalized weighted least
squares and least absolute deviation framework. Such a connection will enable us to extend the post-selection shrinkage
strategy to robust high-dimensional regression models.

The scope of research in PSE is expanding. How to develop a system of diagnostic tools for the high-dimensional
post-shrinkage estimators is an important direction for future research, as suggested by QY'Y.
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