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Abstract: Motivated by modeling and analysis of mass-spectrometry data, a semi- and nonparametric model is
proposed that consists of linear parametric components for individual location and scale and a nonparametric
regression function for the common shape. A multi-step approach is developed that simultaneously estimates
the parametric components and the nonparametric function. Under certain regularity conditions, it is shown
that the resulting estimators is consistent and asymptotic normal for the parametric part and achieve the
optimal rate of convergence for the nonparametric part when the bandwidth is suitably chosen. Simulation
results are presented to demonstrate the effectiveness and finite-sample performance of the method. The
method is also applied to a SELDI-TOF mass spectrometry data set from a study of liver cancer patients.
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1 Introduction

We are concerned with the following semi- and nonparametric regression model

yit = αi + βimðxitÞ + σiðxitÞεit, (1)

where yit is the observed response from i-th individual ði= 1, . . . , nÞ at time t for ðt = 1, . . . ,TÞ, xit is the
corresponding explanatory variable, αi and βi are individual-specific location and scale parameters and
mð�Þ is a baseline intensity function. Here, EðεitÞ=0, Var ðεitÞ= 1, and εit and xit are independent. Of interest
here is the simultaneous estimation of αi, βi and mð�Þ. We shall assume throughout the paper that
εit ði= 1, . . . , n; t = 1, . . . , TÞ are independent and identically distributed (i.i.d.) with an unknown distribu-
tion function, though most results only require that the errors be independent with zero mean.

Model (1) is motivated by analyzing the data generated from mass spectrometer (MS), which is a
powerful tool for the separation and large-scale detection of proteins present in a complex biological
mixture. Figure 1 is an illustration of MS spectra, which can reveal proteomic patterns or features that
might be related to specific characteristic of biological samples. They can also be used for prognosis and for
monitoring disease progression, evaluating treatment or suggesting intervention. Two popular mass spec-
trometers are SELDI-TOF (surface enhanced laser desorption/ionization time-of-fight) and MALDI-TOF
(matrix assisted laser desorption and ionization time-of-flight). The abundance of the protein fragments
from a biological sample (such as serum) and their time of flight through a tunnel under certain electrical
pressure can be measured by this procedure. The y-axis of a spectrum is the intensity (relative abundance)
of protein/peptide, and the x-axis is the mass-to-charge ratio (m/z value) which can be calculated using
time, length of flight, and the voltage applied. It is known that the SELDI intensity measures have errors up
to 50% and that the m=z may shift its value by up to 0.1–0.2% [1]. Generally speaking, many pre-processing
steps need to be done before the MS data can be analyzed. Some of the most important steps are noise
filtering, baseline correction, alignment, normalization, etc. See, e.g., Guilhaus [2], Banks and Petricoin [3],
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Baggerly et al. [4], Baggerly et al. [5], Diamandis [6], Feng et al. [7]. We refer readers to Roy et al. [8] for an
extensive review about the recent advances in mass-spectrometry data analysis. Here, we assume all the
pre-processing steps have already been taken.

In model (1), mð�Þ represents the common shape for all individuals while αi and βi represents the
location and scale parameters for the i-th individual, respectively. Because mð�Þ is unspecified, model (1)
may be viewed as a semiparametric model. However, it differs from the usual semi-parametric models in
that for model (1), both the parametric and nonparametric components are of primary interest, while in a
typical semiparametric setting, the nonparametric component is often viewed as a nuisance parameter.
Model (1) contains many commonly encountered regression models as special cases. If all the parametric
coefficients αi and βi are known, model (1) reduces to the classical nonparametric regression. On the other
hand, if the function mð�Þ is known, then it reduces to the classical linear regression model with each
subject having its own regression line. For the present case of αi, βi and function mð�Þ being unknown, the
parameters are identifiable only up to a common location-scale change. Thus we assume, without loss of
generality, that α1 = 0 and β1 = 1. It is also clear that for αi, βi and mð�Þ to be consistently estimable, we need
to require that both n and T go to ∞.

There is an extensive literature on semiparametric and nonparametric regression. For semiparametric
regression, Begun et al. [9] derived semiparametric information bound while Robinson [10] developed a
general approach to constructing

ffiffiffi
n

p
-consistent estimation for the parametric component. We refer to

Bickel et al. [11] and Ruppert et al. [12] for detailed discussions on the subject. For nonparametric regression,
kernel and local polynomial smoothing methods are commonly used [13–16]. In particular, local polynomial
smoothing has many attractive properties including the automatic boundary correction. We refer to Fan and
Gijbels [17] and Hardle et al. [18] for comprehensive treatment of the subject.

The existing methods for dealing with nonparametric and semiparametric problems are not directly
applicable to model (1). This is due to the mixing of the “finite dimensional” parameters and the nonpara-
metric component. A natural way to handle such a situation is to de-link the two aspects of the estimation
through a two-step approach. In this paper, we propose an efficient iterative procedure, alternating between
estimation of the parametric component and the nonparametric component. We show that the proposed
approach leads to consistent estimators for both the finite-dimensional parameter and the nonparametric
function. We also establish the asymptotic normality for the parametric estimators, and the convergence
rate for the nonparametric estimate that is then used to derive the optimal bandwidth selection.
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Figure 1: Illustration of MS spectra.
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2 Main results

In this section, we develop a multi-step approach to estimating both the finite-dimensional parameters αi
and βi and the nonparametric baseline intensity mð�Þ. Our approach is an iterative procedure which
alternates between estimation of αi and βi and that of mð�Þ. We show that under reasonable conditions,
the estimation for the parametric component is consistent and asymptotically normal when the bandwidth
selection are done appropriately. The estimation of the nonparametric component can also attain the
optimal rate of convergence.

2.1 A multi-step estimation method

Recall that if αi and βi were known, the problem would reduce to the standard nonparametric regression
setting; on the other hand, if mð�Þ were known, it would reduce to the simple linear regression for each i.
For the nonparametric regression, we can apply the local linear regression with the weights Khð�Þ=Kð�=hÞ=h
for suitably chosen kernel function K and bandwidth h. For the simple linear regression, the least squares
estimation may be applied.

To ensure identifiability, we shall set α1 = 0 and β1 = 1. Thus, for i= 1, (1) becomes a standard nonpara-
metric regression problem, from which an initial estimator of mð�Þ can be derived. Replacing mð�Þ in (1) by
the initial estimator, we can apply the least squares method to get estimators of αi, βi for i ≥ 2, which,
together with α1 = 0 and β1 = 1 and local polynomial smoothing, can then be used to get an updated
estimator of mð�Þ. This iterative estimation procedure is described as follows.
(a) Set α1 = 0 and β1 = 1, so that y1t =mðx1tÞ+ σ1ðx1tÞε1t, t = 1, . . . ,T. Apply local linear regression to ðx1t, y1tÞ,

t = 1, . . . , T, to get initial estimator of mð�Þ

~mðxÞ=
PT

t = 1 ω1tðxÞy1tPT
t = 1 ω1tðxÞ

, (2)

where ω1tðxÞ=Khðx1t − xÞðST, 2 − ðx1t − xÞST, 1Þ and

ST, k =
XT
t = 1

Khðx1t − xÞðx1t − xÞk, for k = 1, 2. (3)

(b) With mð�Þ being replaced by ~mð�Þ as the true function, αi, βi, i= 2, . . . , n can be estimated by the least
squares method, i.e.

β̂i =
PT

t = 1½~mðxitÞ− �~mðxi�Þ�yitPT
t = 1 ½~mðxitÞ− �~mðxi�Þ�2

, (4)

α̂i = �yi� − β̂i �~mðxi�Þ= �yi� −
PT

t = 1ð~mðxitÞ− �~mðxi�ÞÞyitPT
t = 1 ð~mðxitÞ − �~mðxi�ÞÞ2

�~mðxi�Þ, (5)

where

�yi� =
1
T

XT
t = 1

yit, and �~mðxi�Þ= 1
T

XT
t = 1

~mðxitÞ.

(c) With the estimates α̂i and β̂i, we can update the estimation of mð�Þ viewing α̂i and β̂i as true values.
Specifically, we apply the local linear regression with the same kernel function Kð�Þ to get an updated
estimator of mð�Þ,
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m̂ðxÞ=
Pn

i= 1

PT
t = 1 ω

*
itðxÞy*itPn

i= 1

PT
t = 1 ω*

itðxÞ
, (6)

where y*it = ðyit − α̂iÞ=β̂i,

ω*
itðxÞ= β̂2i Kh*ðxit − xÞ

Xn
i= 1

β̂2i S
*ðiÞ
T, 2 − ðxit − xÞ

Xn
i= 1

β̂2i S
*ðiÞ
T, 1

" #
(7)

and

S*ðiÞT, k =
XT
t = 1

Kh*ðxit − xÞðxit − xÞk , for k = 1, 2. (8)

Note that the bandwidth for this step, h*, may be chosen differently from h in order to achieve better
convergence rate. The optimal choices for h and h* will become clear in the next subsection where large
sample properties are studied.

(d) Given a pre-specified tolerance level η > 0, repeat steps (b) and (c) until the parametric and the
nonparametric estimators for iterations l and l+ 1 meet the following convergence criteria.

�n
i= 1jjα̂ðl+ 1Þi − α̂ðlÞi jj2 +�n

i= 1jjβ̂ðl+ 1Þi − β̂ðlÞi jj2 +
Z

ðm̂ðxÞðl+ 1Þ − m̂ðxÞðlÞÞdx > η.

Our limited numerical experiences indicate that the final estimator is not sensitive to the initial estimate.
However, as a safe guard, we may start the algorithm with different initial estimates by choosing different
individuals as the baseline intensity. In step (c), the β̂i is in the denominator, which, when close to 0, may
cause instability. Thus, in practice, we can add a small constant to the denominator to make it stable,
though we have not encountered this problem.

The iterative process often converges very quickly. In addition, our asymptotic analysis in the next
subsection shows that no iteration is needed to reach the optimal convergence rate for the estimate of both
parametric and nonparametric components when the bandwidths of each step are properly chosen.
Therefore, we may stop after step (c) to save computation time for large problems.

2.2 Large sample properties

In this section, we study the large sample properties of the estimates for mð�Þ, αi and βi. By large sample, we
mean that both n and T are large. However, the size of n and that of T can be different. Indeed, for MS data,
T is typically much larger than n. The optimal bandwidth selection in the nonparametric estimation will be
determined by asymptotic expansions to achieve optimal rate of convergence. We will also investigate
whether or not the accuracy of α̂i and β̂i may affect the rate of convergence for the estimation of mð�Þ.

The following conditions will be needed to establish the asymptotic theory.
C1. The baseline intensity mð�Þ is continuous and has a bounded second order derivative.
C2. There exist constants α > 0 and δ > 0, such that the marginal density f ð�Þ of xit satisfies f ðxÞ > δ, and

jf ðxÞ− f ðyÞj ≤ cjx − yjα for any × and y in the support of f ð�Þ.
C3. The conditional variance σ2

i ðxÞ=Var ðyitjxit = xÞ is bounded and continuous in x, where i= 1, . . . , n and
t = 1, . . . ,T.

C4. The kernel Kð�Þ is a symmetric probability density function with bounded support. Hence Kð�Þ has the
properties:

R∞
−∞

KðuÞdu= 1, R∞
−∞

uKðuÞdu=0, R∞
−∞

u2KðuÞdu≠0 and bounded. Without loss of general-

ity, we could further assume the support of Kð�Þ lies in the interval ½ − 1, + 1�.

Condition C1 is a standard condition for nonparametric estimation. Condition C2 requires that the density of
xit is bounded away from 0, which may be a strong assumption in general but reasonable for mass
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spectrometry data as xit are approximately uniformly distributed on the support as shown in Figure 1.
Condition C3 allows for heteroscedasticity while restricting the variances to be bounded. Condition C4 is a
standard condition for kernel function used in the local linear regression.

The moments of K and K2 are denoted respectively by μl =
R∞
−∞

ulKðuÞdu and νl =
R∞
−∞

ulK2ðuÞdu for l ≥0.

Lemma 1 Suppose that Conditions C1–C4 are satisfied. Then for ~mð�Þ defined by (2), we have, as h ! 0 and
Th ! ∞,

~mðxÞ=mðxÞ+ 1
2
m′′ðxÞμ2h2 + oðh2Þ+U1ðxÞ, (9)

where U1ðxÞ= ð
PT

t = 1 ω1sðxÞσ1ðx1sÞε1sÞ=ð
PT

t = 1 ω1sðxÞÞ.
Lemma 1 allows us to derive the asymptotic bias, variance and mean squared error for the estimator ~mð�Þ.
This is summarized in the following corollary.

Corollary 1 Let X denote all the observed covariates fxit, i= 1, . . . , n, t = 1, . . . , Tg. Under Conditions C1–C4,
the bias, variance and mean squared error of ~mðxÞ conditional on X have the following expressions.

Eð~mðxÞ−mðxÞjXÞ= 1
2
m′′ðxÞμ2h2 + oðh2Þ,

Var ð~mðxÞjXÞ= 1
Th

½f ðxÞ�− 1σ2
1ðxÞν0 + oð

1
Th

Þ,

E ½f~mðxÞ−mðxÞg2jX�= 1
4
ðm′′ðxÞμ2Þ2h4 +

1
Th

½f ðxÞ�− 1σ2
1ðxÞν0 + oðh4 +

1
Th

Þ.

It is clear from the above expansions that in order to minimize the mean squared error of ~mðxÞ, the
bandwidth h should be chosen to be of order T − 1=5. However, we will show later that this is not necessarily
optimal for our final estimator m̂ð�Þ.

For estimation of scale parameters βi, we can apply Lemma 1 together with the Taylor expansion to
derive asymptotic bias and variance. In particular, we have the following theorem.

Theorem 1 Suppose that Conditions C1–C4 are satisfied and that h ! 0 is chosen so that Th ! ∞. Then the
following expansions hold for i ≥ 2.

Eðβ̂i − βijXÞ= − βiðh2Pi +
1
Th

QiÞ+ oðh2 + 1
Th

Þ, (10)

Var ðβ̂ijXÞ=
PT

t = 1 W
2
itσ

2
i ðxitÞ

ðPT
t = 1 W

2
itÞ

2 + β2i

PT
t = 1 W

2
1tσ

2
i ðx1tÞ

ðPT
t = 1 W

2
itÞ

2 + oð1
T
Þ, (11)

where Wit =mðxitÞ− �mðxi�Þ, �mðxi�Þ=T − 1PT
t = 1 mðxitÞ,

Pi =
μ2
2

PT
t = 1 Witm′′ðxitÞPT

t = 1 W
2
it

,Qi =
ν0
PT

t = 1 f
− 1ðx1tÞσ2

i ðx1tÞPT
t = 1 W

2
it

.

Remark 1 The asymptotic bias and variance of parameter estimator α̂i can be similarly derived. In fact, they
can be inferred from the bias and variance of β̂i through its linear relationship with β̂i, thus having the same
order as those of β̂i in (10) and (11).

Remark 2 The bias of β̂i is of the order h2 + ðThÞ− 1 and the variance is of the order T − 1. To obtain theffiffiffiffi
T

p
-consistency for β̂i, i.e.

ffiffiffiffi
T

p ðβ̂i − βiÞ=Opð1Þ, the order of bias should be OðT − 1
2Þ. This is achieved by choosing

the order of h between OðT − 1
2Þ and OðT − 1

4Þ.
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From the asymptotic expansion for the mean and variance of the initial functional estimator ~mð�Þ and
parameter estimator β̂i, we can obtain the asymptotic expansions for the bias and variance of the
subsequent estimator of the baseline intensity, m̂ð�Þ.

Theorem 2 Suppose that Conditions C1–C4 are satisfied. Suppose also that h for ~mð�Þ and h* for m̂ð�Þ are
chosen so that h ! 0, h* ! 0, Th ! ∞, and nTh* ! ∞. Then the following expansions hold:

Eðm̂ðxÞ −mðxÞjXÞ=
Xn
i= 2

β2i ðh2Pi + ðThÞ− 1QiÞPn
i= 1 β

2
i

 !
mðxÞ−

Xn
i= 2

β2i ðh2Ri + ðThÞ− 1mðxi�ÞQiÞPn
i= 1 β

2
i

+
m′′ðxÞμ2

2
h*2 + o h2 +

1
Th

+ h*2
� �

,

Varðm̂ðxÞjXÞ = 1Pn
i= 1 β

2
i

� �2XT
t = 1

Xn
i= 2

β2i
1
T
+Zit

� � !2

σ2
1ðx1tÞ

+
ν0
Pn

i= 2 β
2
i f

− 1ðxÞσ2
i ðxitÞ

Th*ðPn
i= 1 β

2
i Þ

2 + o
1
T
+

1
nTh*

� �
.

where Pi,Qi,Wit are the same as those in Theorem 1, and Ri = �mðxi�ÞPi − 2− 1μ2 �m′′ðxi�Þ,
Zit = ð

PT
s= 1 W

2
isÞ− 1ðmðxÞ− �mðxi�ÞÞW1t.

In the ideal case when the location-scale parameters are known, the bias and variance of the local linear
estimator of baseline intensity mð�Þ should be of the order Oðh*2Þ and Oð 1

nTh*Þ. And the optimal bandwidth
in this ideal case should be of order ðnTÞ− 1

5. Therefore the bias and variance of the nonparametric
estimator are OððnTÞ− 2

5Þ and OððnTÞ− 4
5Þ, respectively. In addition, the mean squared error is of order

OððnTÞ− 4
5Þ. Interestingly, by choosing the bandwidths h and h* separately, we can achieve this optimal

rate of convergence for the baseline intensity estimator m̂ð�Þ through the proposed multi-step estimation
procedure when the orders of n and T satisfy certain requirement. Notice that the parametric components
will have the optimal

ffiffiffiffi
T

p
convergence rate simultaneously. The conclusions are summarized in the

following theorem.

Theorem 3 Suppose that Conditions C1–C4 are satisfied. The optimal parametric convergence rate of location-
scale estimators can be attained by setting h to be of order T − 1

3; the optimal nonparametric convergence rate
of the baseline intensity estimator m̂ð�Þ can be attained by setting h* to be of order ðnTÞ− 1

5 and h of order T − 1
3,

when T ! ∞, n ! ∞, and n=OðT 1
4Þ.

Remark 3 In Theorem 3, if T ! ∞ while n is fixed, the optimal nonparametric convergence rate could still be
reached by setting h* =OðT − 1

5Þ and h to between OðT − 1
5Þ and OðT − 3

5Þ. By Remark 2, we still have theffiffiffiffi
T

p
-consistency for parametric estimation for the fixed-n situation.

Remark 4 From Theorem 3, if the requirement n=OðT 1
4Þ is not satisfied, then the nonparametric estimator

m̂ð�Þ will not achieve the optimal rate of convergence at any choice of the bandwidths. However, the choice of h
and h* is optimal even if n=OðT 1

4Þ does not hold.

Theorem 4 Suppose that Conditions C1–C4 are satisfied. In addition, assume E ½m2ðxitÞðσ2
i ðxitÞ+ 1Þ� <∞ and

E ½m2ðxitÞ� > 0 for all i= 1, ..., n and t = 1, . . . ,T. If we restrict the order of h to lie between T − 1
2 and T − 1

4, β̂i is
asymptotic normal: ffiffiffiffi

T
p

ðβ̂i − βÞ ! Nð0, σ*2
i Þ, (12)
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where

σ*2
i = lim

T!∞

T − 1PT
t = 1 W

2
itσ

2
i ðxitÞ

ðT − 1
PT

t = 1 W
2
itÞ

2 + β2i
T − 1PT

t = 1 W
2
1tσ

2
1ðx1tÞ

ðT − 1
PT

t = 1 W
2
itÞ

2

 !
.

Here, if we assume σ2
i ð�Þ to be a constant for each subject i, then its value can be consistently estimated by

the plug-in estimator

σ̂2
i =T

− 1
XT
t = 1

ðyit − α̂i − β̂im̂ðxitÞÞ2, (13)

where α̂1 = 0 and β̂1 = 1.
From (12), the asymptotic variance of β̂i is of order OðT − 1Þ, provided that the order of the bandwidth h is

properly chosen. Since the asymptotic expansion for β̂i does not involves the choice of h*, the specific
choice of different h* will not affect the order of the asymptotic variance of β̂i.

2.3 Bandwidth selection

In Section 2.2, we studied how the choice of bandwidths h and h* may affect the asymptotic properties of
the estimators. However, in practice, we need a data-driven approach to choosing the bandwidths. Our
suggestion on this is to use a K-fold cross-validation bandwidth selection rule.

First, we divide the n individuals into K groups Z1, Z2, . . . ,ZK randomly. Here, Zk is the k-th test set, and
the k-th training set is Z− k = ff1, . . . , ngnZkg. We estimate the baseline curve mð�Þ using the observations in
the training set Z− k and denote the estimator as m̂ðZ− k, h, h*Þ, where h and h* are the bandwidths of the two
nonparametric regression steps for ~mð�Þ and m̂ð�Þ, respectively. Recall that at the beginning of the multi-step
estimation procedure, we fix the first observation as the baseline to solve the identifiability issue. In the
case of cross-validation, for each split, the baseline will corresponds to the first observation inside Z − k,
which is different for different k. We circumvent the problem of comparing different baseline estimates by
using them to predict the test data in Zk, i.e., after obtaining the estimator of baseline curve from Z− k. We
then regress it on the data in Zk, and compute the mean squared prediction error (MSPE).

MSPEðZ− k, h, h
*Þ= 1

jZkj
X
i2Zk

XT
t = 1

½yit − ðα̂ki + β̂kim̂tðZ − k, h, h
*ÞÞ�2, (14)

where α̂ki and β̂ki are the estimated regression coefficients. We repeat the calculation for k = 1, . . . ,K, and
the optimal pair ðĥ, ĥ*Þ is the one which minimizes the average MSPE, i.e.

ðĥ, ĥ*Þ= arg min
ðh, h*Þ

1
K

XK
k = 1

MSPEðZ− k, h, h
*Þ. (15)

The effectiveness of the cross-validation will be evaluated in Sections 3 and 4.

3 Application to mass spectrometry data

We now apply the proposed multi-step method to a SELDI-TOF mass spectrometry data set from a study of
33 (n= 33) liver cancer patients conducted at Changzheng Hospital in Shanghai. For each patient, we extract
the m=z values in the region 2,000–10,000 Da (T = 21, 000), which is believed to contain all the useful
information. Figure 2 contains the curves of 10 randomly picked patients.
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There are some noticeable features in the data. All curves appear to be continuous. They peak simulta-
neously around certain locations; at each location, curves have the same shape but with different heights.
All those features are captured well by our model. Since the observed values of m=z for each person may
fluctuate, we need to perform registration to make the analysis easier. Here, we use the observations from
the first individual and set his/her values as the reference. Then we use the linear interpolation method to
compute the intensities of all the other individuals at the reference m=z locations. After that we get the
preprocessed data which has the same m=z values for each observation.

We use the cross-validation method described in Section 2.3 to select the optimal bandwidths with
K = 33, i.e., leave-one-out cross validation. We compute the MSPE at the grid of h= 2, 4, 6, . . . , 40 and
h* = 2, 4, 6, . . . , 40. Table 1 contains a portion of the result with h= 30, 32, . . . , 40 and h* = 2, 4, 6, . . . , 20.

As we can see in Table 1, the minimum MSPE occurs at the location of h= 34 and h* = 4, which agrees with
our theory that h and h* should not be chosen with the same rate for the purpose of estimating the
nonparametric component.

Finally, we use the selected bandwidths to estimate the location and scale parameters as well as the
nonparametric curve for the whole data set. The estimated parameters are reported in Table 2 and the baseline
nonparametric curve estimation is shown in the lower part of Figure 2. From Table 2, we can see that each
individual has very different regression coefficients, which was also verified by looking at Figure 2. In

10,0008,0006,0004,0002,000

10,0008,0006,0004,0002,000

Figure 2: Curves of 10 observations and the baseline estimate.

Table 1: MSPE of the leave-one-out prediction of real data. The minimum MSPE is shown in bold.
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addition, comparing the estimated curve for the baseline intensities with the real curves of 10 observations, it
is clear that the majority of the peaks and shapes are captured by the nonparametric estimate with appro-
priate degree of smoothing. A graphical representation of the raw curve of a single individual (16th subject) is
also illustrated in Figure 3 along with estimates derived from ~mð�Þ and m̂ð�Þ. We can see from the figure that
the estimate from m̂ð�Þ is notably better than that from ~mð�Þ, which shows that multi-step procedure is
effective in improving the estimates for the baseline curve. We observed similar phenomenon for all the other
subjects.

4 Simulation studies

We conduct simulations to assess the performance of the proposed method for parameter and curve
estimation. The true curve mð�Þ is chosen from a moving average smoother of the cross-sectional mean of
a fraction of real Mass Spectrometry data in Section 3 after log transformation. We set 10000 m=z values
equally-spaced from 1 to 10,000 (T = 10, 000) and the number of individuals n= 30. The true values of the
parameters αi, βi, i= 1, 2, . . . , n for each individual are shown in Table 3. And the error terms εit are sampled
independently from Nð0, σ2Þ, where we set σ =0.25.

We apply our multi-step procedure to the simulated data with different choices of the bandwidth. The
number of runs is 100. The estimated parameters α̂i and β̂i are shown in Table 3 along with the standard

Table 2: Regression parameters of real data.

ID α̂ β̂ ID α̂ β̂ ID α̂ β̂

    −. .  −. .
 −. .  −. .  . .
 −. .  −. .  . .
 −. .  −. .  . .
 −. .  −. .  −. .
 −. .  . .  . .
 . .  . .  . .
 . .  −. .  −. .
 −. .  −. .  −. .
 −. .  −. .  −. .
 −. .  −. .  −. .

2,000 4,000 6,000 8,000 10,000
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f N
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16

raw data

estimated with m~
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Figure 3: Nonparametric estimates of the curve from
~mð�Þ and m̂ð�Þ for the 16th object.
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errors. We set h= 35, which leads to the smallest SSE of ~m shown in Table 4. It is evident that the estimation
is very accurate for all the location and scale parameters. In addition, for each h and h*, the computation
time is less than two minutes on a laptop.

From Table 4, we can see that the global optimal bandwidths are h= 25, h* = 36. It is interesting to note
that the optimal bandwidth for ~mð�Þ is h= 35, which is different from the optimal bandwidth for the final
estimator.

To evaluate the quality of the our multi-step estimation method for the nonparametric baseline
function, we consider a classical nonparametric estimation on another set of data where the same true
function mð�Þ is used but αi =0, βi = 1 for all i= 1, . . . , n. We applied the same local linear estimation with

Table 3: Regression parameter estimates (h=35).

ID α β α̂ β̂ ID α β α̂ β̂

   .(.) .(.)  .  .(.) .(.)
 . . .(.) .(.)  . . .(.) .(.)
 . . .(.) .(.)   . .(.) .(.)
 . . .(.) .(.)   . −.(.) .(.)
 .  .(.) .(.)  .  .(.) .(.)
   .(.) .(.)  .  .(.) .(.)
  . −.(.) .(.)  . . .(.) .(.)
 . . .(.) .(.)  . . .(.) .(.)
 . . .(.) .(.)   . .(.) .(.)
 .  .(.) .(.)    .(.) .(.)
 .  .(.) .(.)  .  .(.) .(.)
  . .(.) .(.)  . . .(.) .(.)
  . .(.) .(.)  . . .(.) .(.)
 . . .(.) .(.)  . . .(.) .(.)
 .  .(.) .(.)    .(.) .(.)

Note: Standard deviations are in parentheses.

Table 4: SSE of the initial and updated estimation of m. The minimum SSE is
shown in bold.

SSE of ~m

h     

. . . . .

SSE of ~m

h
h*

    

 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
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different bandwidths. The mean SSE of the estimated mð�Þ from 100 repetitions for different hs are given in
Table 5. When we applied the multi-step estimation procedure, the best mean SSE we achieved in Table 4 is
very close to the minimal mean SSE 0.4442 for the oracle estimator. This comparison confirms that there is
little loss of information in the proposed method when both parametric and nonparametric components are
estimated simultaneously.

We use cross-validation to get a data-driven choice of the bandwidths. Here, we set K = 5 to get a mean
MSPE of every different bandwidth choices of both steps over 100 runs, and the optimal bandwidths are
those with the minimum mean MSPE. The mean MSPE values are shown in Table 6, from which we can see
that the smallest value is located at h= 25, h* = 36, which is quite close to the optimal bandwidths h= 25 and
h* = 38 in Table 4. Therefore, the cross-validation idea appears to work well in terms of selecting the best
bandwidths.

5 Discussion

This paper proposes a semi- and nonparametric model suitable for analyzing the mass spectra data. The
model is flexible and intuitive, capturing the main feature in the MS data. Both the parametric and
nonparametric components have natural interpretation. A multi-step iterative algorithm is proposed for
estimating both the individual location and scale regression coefficients and the nonparametric function.
The algorithm combines local linear fitting and the least squares method, both of which are easy to
implement and computationally efficient. Both simulation studies and real data analysis demonstrate
that the proposed multi-step procedure works well.

The local linear fitting for the nonparametric function estimation maybe replaced with other nonpara-
metric estimation techniques. Because the location and scale parameters are subject specific, the empirical

Table 5: SSE of the estimation of m in the dataset with same parameters in each individual.
The minimum SSE is shown in bold.

h     

SSE . . . . .

Table 6: Mean MSPE of the 5-fold CV over 100 times. Here, we multiply T for all the MSPE
values and subtract the minimum 625.61956.

h
h*

    

 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 . . . . .
 3.4e−08  5.6e−07 2.0e−06 4.2e−06
 . . . . .
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Bayes method [19] may be used. In addition, nonparametric Bayes may also be applicable with the
nonparametric function being modeling as a realization of Gaussian process.

The proposed model and the associated iterative estimation method do not account for the random
error in the measurement of X. It is desirable to incorporate the measurement error into the model [20].

Many studies involving MS data are aimed at classifying patients of different disease types. The
information of peaks are usually applied as the basis of the classifier. The proposed method provides a
natural way to identify the peaks for different group of patients by using the multi-step estimation
procedure on each group and finding out the corresponding nonparametric baseline function. From the
estimated baseline function, the information of peaks can be easily extracted, which can then be used for
classification.
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Appendix

The Appendix contains proofs of Theorems 1–4, where the proofs of Lemma 1 and Corollary 1 can be found
in the supplementary materials. We begin with some notations, which will be used to streamline some of
the proofs. Because all asymptotic expansions are derived with xit’s being fixed, we will, for notational
simplicity, use E to denote the conditional expectation and Var to denote the conditional variance given
xit’s throughout the Appendix. For i= 1, . . . , n and t = 1, . . . , T, let

Vit =
1
T
−
σiðXitÞWit �mðxi�ÞPT

s = 1 W
2
is

.

A.1 Proof of Theorem 1

Proof. First of all, define ~Wit = ~mðxitÞ − �~mðxi�Þ to simplify the presentation. By definition, we have the
following expansion for β̂i when i ≥ 2.

β̂i − βi = βi

PT
t = 1

~WitðmðxitÞ− ~mðxitÞÞPT
t = 1

~W2
it

+
PT

t = 1
~WitσiðxitÞεitPT
t = 1

~W2
it

≡ βiDi +Gi.

(16)

From Lemma 1 and the proof of Corollary 1, we have

~Wit −Wit =Opðh2Þ. (17)
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Plugging (9) into Di, we have

Di = −

PT
t = 1½ðU1ðxitÞ − �U1ðxi�ÞÞU1ðxitÞ+ 1

2 μ2m′′ðxitÞWith2 + oðh2Þ�PT
t = 1

~W2
it

−

PT
t = 1f½Wit +Oðh2Þ�U1ðxitÞ+Oðh2Þ½U1ðxitÞ− �U1ðxi�Þ�gPT

t = 1
~W2
it

= −

PT
t = 1ðU1ðxitÞ− �U1ðxi�ÞÞU1ðxitÞPT

t = 1 W
2
it

− h2Pi −

PT
t = 1 WitU1ðxitÞPT

t = 1 W
2
it

ð1 + opð1ÞÞ+ oðh2 + 1
Th

Þ,

(18)

where the last asymptotic expansion follows from (17). Similarly for Gi, we have

Gi =

PT
t = 1 WitσiðxitÞεitð1 +Oðh2ÞÞPT

t = 1
~W2
it

+

PT
t = 1ðU1ðxitÞ− �U1ðxi�ÞÞσiðxitÞεitPT

t = 1
~W2
it

=

PT
t = 1 WitσiðxitÞεitPT

t = 1 W
2
it

ð1 + opð1ÞÞ.
(19)

We observe that for any i ≥ 2, U1ðxitÞ is a linear combination of fε1t, t = 1, . . . ,Tg. Therefore, U1ðxitÞ is
independent of fεit, i= 2, . . . , n, t = 1, . . . , Tg. By using the tower property, we have EGi =0. Therefore, βiDi

is the only part that contributes to the bias of β̂i. In view of these and Corollary 1, we have the following
expansions for the bias and variance terms

Eðβ̂i − βiÞ= − βih
2Pi − βi

E
PT

t = 1 ðU1ðxitÞ− �U1ðxi�ÞÞ2PT
t = 1 W

2
it

+ oðh2 + 1
Th

Þ

= − βih
2Pi − βi

PT
t = 1 VarðU1ðxitÞÞð1 + oð1ÞÞPT

t = 1 W
2
it

+ oðh2 + 1
Th

Þ

= − βih
2Pi − βi

1
Th

Qi + oðh2 + 1
Th

Þ,

and

Varðβ̂iÞ =Var − βi

PT
t = 1 WitU1ðxitÞPT

t = 1 W
2
it

ð1 + opð1ÞÞ
 !

+Var
PT

t = 1 WitσiðxitÞεitPT
t = 1 W

2
it

ð1 + opð1ÞÞ
 !

.

Straightforward variance calculation for an independent sum gives

Var
XT
t = 1

WitU1ðxitÞ
 !

=
XT
s= 1

XT
t = 1

Wit
ω1sðxitÞPT
l= 1 ω1lðxitÞ

" #2
σ2
1ðx1sÞ. (20)

We have

XT
t = 1

Wit
ω1sðxitÞPT
s= 1 ω1sðxitÞ

=
XT
t = 1

ðmðxitÞ − �mðxi�ÞÞKhðxit − x1sÞðST, 2 − ðxit − x1sÞST, 1Þ
ST, 0ST, 2 − S2T, 1

.
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We expand mðxÞ in the neighborhood of point x1s using Taylor’s expansion,

mðxitÞ=mðx1sÞ + ðxit − x1sÞm′ðx1sÞ+ 1
2
ðxit − x1sÞ2m′′ðx1sÞ+ opððxit − x1sÞ2Þ.

Since the kernel function Khðx − x1sÞ vanishes out of the neighborhood of x1s with diameter h, we can obtain
the following

XT
t = 1

mðxitÞKhðxit − x1sÞðST, 2 − ðxit − x1sÞST, 1Þ
ST, 0 ST, 2 − S2T, 1

=mðx1sÞ+
XT
t = 1

m′ðx1sÞðxit − x1sÞKhðxit − x1sÞðST, 2 − ðxit − x1sÞST, 1Þ
ST, 0ST, 2 − S2T, 1

+
XT
t = 1

1
2
ðxit − x1sÞ2m′′ðx1sÞ+ opððxit − x1sÞ2Þ

� �
Khðxit − x1sÞðST, 2 − ðxit − x1sÞST, 1Þ

ST, 0ST, 2 − S2T, 1

=mðx1sÞ+Opðh2Þ
XT
t = 1

Khðxit − x1sÞðST, 2 − ðxit − x1sÞST, 1Þ
ST, 0ST, 2 − S2T, 1

=mðx1sÞ+Opðh2Þ,

where the functions ST, k, k =0, 1, 2 are evaluated at the point xit. Combined with �mðxi�Þ= �mðx1�Þ+OpðT − 1=2Þ,
we can have the expansion

XT
t = 1

Wit
ω1sðxitÞPT
s= 1 ω1sðxitÞ

=mðx1sÞ+Opðh2Þ− �mðx1�Þ+OpðT − 1=2Þ=W1s +Opðh2 + T − 1=2Þ

Then recall (20), we have Var ðPT
t = 1 WitU1ðxitÞÞ=

PT
t = 1 W

2
1tσ

2
1ðx1tÞ+ opðTÞ, which leads to the variance

expansion

Var ðβ̂iÞ= β2i
PT

t = 1 W
2
1tσ

2
1ðx1tÞ

ðPT
t = 1 W

2
itÞ

2 +

PT
t = 1 W

2
itσ

2
i ðxitÞ

ðPT
t = 1 W

2
itÞ

2 + opð1TÞ.

□

A.2 Proof of Theorem 2

Proof. Recall (7) and (8), we have

Xn
i= 1

XT
t = 1

ω*
itðxÞðxit − xÞ=

Xn
i= 1

β̂2i S
*ðiÞ
T, 2

Xn
i= 1

β̂2i S
*ðiÞ
T, 1 −

Xn
i= 1

β̂2i S
*ðiÞ
T, 1

Xn
i= 1

β̂2i S
*ðiÞ
T, 2 = 0.

Then we have the asymptotic expansion of the updated estimator of baseline intensity m̂ð�Þ at time point ×
as follows.

By definition of m̂ð�Þ in (6), we can write

m̂ðxÞ−mðxÞ=
Pn

i= 1

PT
t = 1 ω

*
itðαi − α̂iÞ=β̂iPn

i= 1

PT
t = 1 ω*

it

+

Pn
i= 1

PT
t = 1 ω

*
itσðxitÞεi=β̂iPn

i= 1

PT
t = 1 ω*

it

+

Pn
i= 1

PT
t = 1 ω

*
itmðxitÞðβi − β̂iÞ=β̂iPn

i= 1

PT
t = 1 ω*

it

+

Pn
i= 1

PT
t = 1 ω

*
itð12m′′ðxÞðxit − xÞ2 + oððxit − xÞ2ÞÞPn

i= 1

PT
t = 1 ω*

it

.

(21)
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From the proof of Theorem 1, we have

β̂i = βi − βih
2Pi − βi

PT
t = 1ðU1ðxitÞ− �U1ðxi�ÞÞU1ðxitÞPT

t = 1 W
2
it

− βi

PT
t = 1 WitU1ðxitÞPT

t = 1 W
2
it

ð1 + opð1ÞÞ

+

PT
t = 1 WitσiðxitÞεitPT

t = 1 W
2
it

ð1 + opð1ÞÞ+ oðh2 + 1
Th

Þ.
(22)

Then, from the least square expression, we have the asymptotic expansion for α̂i as follows.

α̂i = �yi� − β̂i �~mðxi�Þ

= αi + βi �mðxi�Þ+�εi� − β̂i½�mðxi�Þ+ μ2
2
�m′′ðxi�Þh2 + �U1ðxi�Þ+ oðh2Þ�

= αi + βih
2Ri + �mðxi�Þβi

PT
t = 1ðU1ðxitÞ− �U1ðxi�ÞÞU1ðxitÞPT

t = 1 W
2
it

+ oðh2 + 1
Th

Þ

+
XT
t = 1

Vitεitð1 + opð1ÞÞ− βi
XT
t = 1

VitU1ðxitÞð1 + opð1ÞÞ.

(23)

Now, we plug the above asymptotic expansions (22) and (23) into the right hand side of (21). The first part of
(21) could be expanded as follows

Pn
i= 1

PT
t = 1 ω

*
itðαi − α̂iÞ=β̂iPn

i= 1

PT
t = 1 ω*

it

=

Pn
i= 1

PT
t = 1ðαi − α̂iÞ=β̂i * β̂2i Kh*ðxit − xÞ

Pn
i= 1 β̂

2
i S

*ðiÞ
T, 2 − ðxit − xÞ

Pn
i= 1 β̂

2
i S

*ðiÞ
T, 1

h i
Pn

i= 1

PT
t = 1 β̂

2
i Kh*ðxit − xÞ

Pn
i= 1 β̂

2
i S

*ðiÞ
T, 2 − ðxit − xÞ

Pn
i= 1 β̂

2
i S

*ðiÞ
T, 1

h i

=

Pn
i= 1ðαi − α̂iÞβ̂i

PT
t = 1 Kh*ðxit − xÞ

Pn
i= 1 β̂

2
i S

*ðiÞ
T, 2 − ðxit − xÞ

Pn
i= 1 β̂

2
i S

*ðiÞ
T, 1

h i
Pn

i= 1 β̂
2
i

PT
t = 1 Kh*ðxit − xÞ

Pn
i= 1 β̂

2
i S

*ðiÞ
T, 2 − ðxit − xÞ

Pn
i= 1 β̂

2
i S

*ðiÞ
T, 1

h i .

(24)

The numerator of (24) has expansion

Xn
i= 1

ðαi − α̂iÞβ̂i
�
Tf ðxÞf1 + opð1Þg

Xn
i= 1

β̂2i Th
*2f ðxÞμ2f1 + opð1Þg

− Th* h*f ′ðxÞμ2 +Op h*2 +
1ffiffiffiffiffiffiffi
Th*

p
� �	 
Xn

i= 1

β̂2i Th
* h*f ′ðxÞμ2 +Op h*2 +

1ffiffiffiffiffiffiffi
Th*

p
� �	 
�

= T2h*2
Xn
i= 1

ðαi − α̂iÞβ̂i f ðxÞf1 + opð1Þ
� �Xn

i= 1

β̂2i f ðxÞμ2f1 + opð1Þg

− h*f ′ðxÞμ2 +Op h*2 +
1ffiffiffiffiffiffiffi
Th*

p
� �	 
Xn

i= 1

β̂2i h*f ′ðxÞμ2 +Op h*2 +
1ffiffiffiffiffiffiffi
Th*

p
� �	 
�

= T2h*2
Xn
i= 1

ðαi − α̂iÞβ̂i f ðxÞ
Xn
i= 1

β2i f ðxÞμ2f1 + opð1Þg
" #

,

(25)

where the last equation following from β̂i = βi +Oðh2Þ+OððThÞ− 1Þ+OpðT − 1=2Þ.
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Similarly, the denominator of (24) has the following expansion

Xn
i= 1

β̂2i

�
Tf ðxÞf1 + opð1Þg

Xn
i= 1

β̂2i Th
*2f ðxÞμ2f1 + opð1Þg

−Th* h*f ′ðxÞμ2 +Op h*2 +
1ffiffiffiffiffiffiffi
Th*

p
� �	 
Xn

i= 1

β̂2i Th
* h*f ′ðxÞμ2 +Op h*2 +

1ffiffiffiffiffiffiffi
Th*

p
� �	 
�

=T2h*2
Xn
i= 1

β̂2i

�
f ðxÞf1 + opð1Þg

Xn
i= 1

β̂2i f ðxÞμ2f1 + opð1Þg

− h*f ′ðxÞμ2 +Op h*2 +
1ffiffiffiffiffiffiffi
Th*

p
� �	 
Xn

i= 1

β̂2i h*f ′ðxiÞμ2 +Op h*2 +
1ffiffiffiffiffiffiffi
Th*

p
� �	 
�

=T2h*2
Xn
i= 1

β̂2i

�
f ðxÞ

Xn
i= 1

β2i f ðxÞμ2f1 + opð1Þg
�
.

(26)

Then combining the expansions (25) and (26), we have the following expansion for the first part of (21).

Pn
i= 1

PT
t = 1 ω

*
itðαi − α̂iÞ=β̂iPn

i= 1

PT
t = 1 ω*

it

=
T2h*2

Pn
i= 1ðαi − α̂iÞβ̂i f ðxÞPn

i= 1 β
2
i f ðxÞμ2f1 + opð1Þg

� 
T2h*2

Pn
i= 1 β̂

2
i f ðxÞPn

i= 1 β
2
i f ðxÞμ2f1 + opð1Þg

� 

=
Pn

i= 2ðαi − α̂iÞβiPn
i= 1 β

2
i

ð1 + opð1ÞÞ.

For other parts of (21), we can apply the same techniques for expansion. As a result, the following
expansion of m̂ holds.

m̂ðxÞ−mðxÞ=
Pn

i= 2 βiðαi − α̂iÞPn
i= 1 β

2
i

ð1 + opð1ÞÞ+
Pn

i= 1 βi
PT

t = 1 Kh*ðxit − xÞεitð1 + opð1ÞÞPn
i= 1 β

2
i Tf ðxÞ

+

Pn
i= 1 βiðβi − β̂iÞ

PT
t = 1 Kh*ðxit − xÞεitð1 + opð1ÞÞPn
i= 1 β

2
i Tf ðxÞ

= −

Pn
i= 2

β2i h2Ri + �mðxi�Þ
PT
t = 1

ðU1ðxitÞ− �U1ðxi�ÞÞ2=
PT
t = 1

W2
it −

PT
t = 1

VitU1ðxitÞð1 + opð1ÞÞ
� �

Pn
i= 1 β

2
i

+
Pn

i= 1 βi
PT

t = 1 Kh*ðxit − xÞεitð1 + opð1ÞÞPn
i= 1 β

2
i

+mðxÞ
Pn

i= 2 β
2
i h

2PiPn
i= 1 β

2
i

+

Pn
i= 2 β

2
i

PT
t = 1 ðU1ðxitÞ− �U1ðxi�ÞÞ2=

PT
t = 1 W

2
itPn

i= 1 β
2
i f ðxÞ

( )

+mðxÞ
Pn

i= 2 β
2
i

PT
t = 1 WitU1ðxitÞð1 + opð1ÞÞ=

PT
t = 1 W

2
itPn

i= 1 β
2
i

( )

+
m′′ðxÞ

2
μ2h

*2 + oðh2 + 1
Th

+ h*2Þ.

Then it is straightforward to derive the bias of m̂ðxÞ as follows

Eðm̂ðxÞ−mðxÞÞ= −

Pn
i= 2 β

2
i ðh2Ri + ðThÞ− 1 �mðxi�ÞQiÞPn

i= 1 β
2
i

+
Pn

i= 2 β
2
i ðh2Pi + ðThÞ− 1QiÞPn

i= 1 β
2
i

" #
mðxÞ

+
m′′ðxÞ

2
μ2h

*2 + o h2 +
1
Th

+ h*2
� �

.
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For the variance of m̂ðxÞ, we notice that the error terms fεit, i= 1, . . . , n, t = 1, . . . , Tg are independent,
which implies the independence of εit, i= 2, . . . , n and U1ðxitÞ. Therefore, we have the following asymptotic
expansion for the variance.

Varðm̂ðxÞ−mðxÞÞ=Var
Pn

i= 2 β
2
i

PT
t = 1 VitU1ðxitÞPn
i= 1 β

2
i

+
mðxÞPn

i= 2 β
2
i

PT
t = 1 WitU1ðxitÞ=

PT
t = 1 W

2
itPn

i= 1 β
2
i

 

+

Pn
i= 1

PT
t = 1 βiKh*ðxit − xÞεitPn

i= 1 β
2
i

PT
t = 1 Kh*ðxit − xÞ

!
+ o

1
T
+

1
nTh*

� �

=Var

Pn
i= 2 β

2
i

PT
t = 1ðVit +mðxÞWit=

PT
t = 1 W

2
itÞU1ðxitÞPn

i= 1 β
2
i

 !

+
ν0
Pn

i= 2 β
2
i f

− 1ðxÞσ2
i ðxitÞ

Th*ðPn
i= 1 β

2
i Þ

2 + o
1
T
+

1
nTh*

� �
,

where the expansions follow similar techniques as (25) and (26). Now, by the definition of U1, we have

Varðm̂ðxÞ −mðxÞÞ= 1

ðPn
i= 1 β

2
i Þ

2

XT
s= 1

Xn
i= 2

β2i
1
T
+Zis

� � !2

σ2
1ðx1sÞ

+
ν0
Pn

i= 2 β
2
i f

− 1ðxÞσ2
i ðxitÞ

Th*ðPn
i= 1 β

2
i Þ

2 + o
1
T
+

1
nTh*

� �
.

□

A.3 Proof of Theorem 3

Proof. From the results of Theorem 2, it is straightforward to show that the order of the mean squared error

of m̂ðxÞ is h4 + ðT2h2Þ− 1 + h*4 +T − 1 + ðnTh*Þ− 1. To minimize the mean squared error, we can taken h=OðT − 1
3Þ

and h* =OððnTÞ− 1
5Þ. Under such choices of h and h*, the order of the mean squared error is ðnTÞ− 4

5 + T − 1.
Therefore, to match the optimal nonparametric convergence rate ðnTÞ− 4

5 for mean squared error, the
condition n=OðT 1

4Þ is required. □

A.4 Proof of Theorem 4

Proof. We start from the asymptotic expansion from (22) in the proof of Theorem 2. First, we investigate the
asymptotic behavior of the third term on the right hand side of (22).

As a first step, we have

Var
XT
t = 1

ðU1ðxitÞ− �U1ðxi�ÞÞ2
 !

≤ 8E
XT
t = 1

U1ðxitÞ2
" #20

@
1
A. (27)

Now, following the definition of U1ð�Þ and applying the same expansion of ω1sðxitÞ as in the proof of
Theorem 1,
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E
XT
t = 1

U1ðxitÞ2
" #20

@
1
A=E

XT
t = 1

PT
s = 1 Khðxit − x1sÞσ1ðx1sÞε1s

Tf ðxitÞ

" #22
4

3
520

@
1
Að1 + oð1ÞÞ

≤
1
T4 E

XT
s, u= 1

XT
t = 1

K2
hðxit − x1sÞ
f 2ðxitÞ Ifjx1s − x1uj < 2hg

 !2

σ2
1ðx1sÞσ2

1ðx1uÞ
0
@

1
Að1 + oð1ÞÞ,

where the last inequality follows from exchanging the summation order and the property of the kernel
function Kð�Þ. Observe that f ð�Þ is bounded from below by Condition C2, the following inequality sequence
is obtained.

E
XT
t = 1

U1ðxitÞ2
" #20

@
1
A ≤

1

T4δ4
E

XT
s, u= 1

Tν0f ðx1sÞ
h

� �2

Ifjx1s − x1uj < 2hgσ
2
1ðx1sÞσ2

1ðx1uÞ
 !

ð1 + oð1ÞÞ

≤
Oð1Þ
T2h2

XT
s, u= 1

Ifjx1s − x1uj < 2hg,

where the last term has the order of Oðh− 1Þ by noticing

XT
s, u= 1

Ifjx1s − x1uj < 2hg =
XT
s= 1

4Thf ðx1sÞ.

We can also derive the order of the variance for the other two terms,

Var − βi

PT
t = 1 WitU1ðxitÞPT

t = 1 W
2
it

+

PT
t = 1 WitσiðxitÞεitPT

t = 1 W
2
it

 !
=OðT − 1Þ.

Due to the relationship of h and T, the third term is negligible when calculating the asymptotic variance.
Then, the expansion for the bias of β̂i can be rewritten as follows

β̂i − βi + βiðh2Pi +
1
Th

QiÞ= − βi
XT
s= 1

W1sσ1ðx1sÞε1sPT
t = 1 W

2
it

 !
+
PT

t = 1 WitσiðxitÞεitPT
t = 1 W

2
it

ð1 + opð1ÞÞ+ oðh2 + 1
Th

Þ,

where the right hand side is an independent sum of random variables with their variances being of the
same order, OðT − 1Þ. As a result, the central limit theorem can be applied directly for β̂i.

ffiffiffiffi
T

p
½β̂i − βi − βiðh2Pi +

1
Th

QiÞ�!dNð0, σ*2
i Þ,

where the asymptotic variance σ*2
i is finite with the following expression.

σ*2 = lim
T!∞

T − 1PT
t = 1 W

2
itσ

2
i ðxitÞ

ðT − 1
PT

t = 1 W
2
itÞ

2 + β2i
T − 1PT

t = 1 W
2
1tσ

2
1ðx1tÞ

ðT − 1
PT

t = 1 W
2
itÞ

2

" #
.

Notice that if the order of h is between T − 1
2 and T − 1

4, then β̂i is asymptotic unbiased sinceffiffiffiffi
T

p
βiðh2Pi + 1

Th QiÞ!d0.
From Theorems 1 and 2 we have β̂i, α̂i, m̂ð�Þ are consistent estimators of βi, αi,mð�Þ, respectively. Thus,

σ̂2
i =

1
T

PT
t = 1 ðyit − α̂i − β̂im̂ðxitÞÞ2 is also consistent for the variance under the assumption that σið�Þ is a

constant function for each subject i. □
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