Supplementary of "Model Selection for High Dimensional Quadratic Regression via Regularization"

Supplementary A: Theorem 2

In this supplementary to our paper, we show a generalized version of Theorem 1 without Gaussian assumption. Similar as in our paper, constants C_{1}, C_{2}, \ldots and c_{1}, c_{2}, \ldots are locally defined and may take different values in different sections. We start with a brief review of definition of a subgaussian random variable and its properties.

A random variable X is called b-subgaussian if for some $b>0, E\left(e^{t X}\right) \leq e^{b^{2} t^{2} / 2}$ for all $t \in \mathbb{R}$. The set of all subgaussian random variables is closed under linear operation by the following proposition.

Proposition 1 Let X_{i} be b_{i}-subgaussian for $i=1, \ldots, n$. Then $a_{1} X_{1}+\ldots+a_{n} X_{n}$ is B subgaussian with $B=\sum_{i=1}^{n}\left|a_{i}\right| b_{i}$. Moreover, if X_{1}, \ldots, X_{n} are independent, $a_{1} X_{1}+\ldots+a_{n} X_{n}$ is B-subgaussian with $B=\left(\sum_{i=1}^{n} a_{i}^{2} b_{i}^{2}\right)^{\frac{1}{2}}$.

Moreover, the tail probability of a subgaussian variable can be well controlled.
Proposition 2 If X is b-subgaussian, then $\mathbf{P}(|X|>t) \leq 2 e^{-\frac{t^{2}}{2 b^{2}}}$ for all $t>0$. Moreover, there exists a positive constant, say $a=1 / 6 b^{2}$, such that $E e^{a X^{2}} \leq 2$.

These well-known results can be found, e.g., in Rivasplata (2012).
Condition (SG) $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ are IID random vectors from an elliptical distribution with marginal b-subgaussian distribution. Moreover, $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ are IID with b-subgaussian distribution.

We still use Σ and $\Sigma_{\mathcal{A B}}$ denote the covariance matrix of \mathbf{x}_{i} and its submatrix corresponding to index sets \mathcal{A} and $\mathcal{B} . \mathbf{B}=\left(B_{j k}\right)$ is the coefficient matrix for interaction effects with $B_{j k}=\beta_{j, k} / 2,(j \neq k)$ and $B_{j j}=\beta_{j, j} . \Lambda_{\min }(\mathbf{A})$ and $\Lambda_{\max }(\mathbf{A})$ denote the smallest and largest eigenvalues of a matrix \mathbf{A}. We need the following technical conditions:
(C1) (Irrepresentable Condition) $\left\|\Sigma_{\mathcal{S}^{c} \mathcal{S}}\left(\Sigma_{\mathcal{S S}}\right)^{-1}\right\|_{\infty} \leq 1-\gamma, \gamma \in(0,1]$.
(C2) (Eigenvalue Condition) $\Lambda_{\min }\left(\Sigma_{\mathcal{S S}}\right) \geq C_{\min }>0$.
(C3) (Dimensionality and Sparsity) $s \log p=o(n)$ and $s(\log s)^{\frac{1}{2}}=o\left(n^{\frac{1}{3}}\right)$.
(C4) (Coefficient Matrix) \mathbf{B} is sparse and supported in a submatrix $\mathbf{B}_{\mathcal{S S}} . \quad \Lambda_{\max }\left(\mathbf{B}^{2}\right)=$ $\Lambda_{\max }\left(\mathbf{B}_{\mathcal{S S}}^{2}\right) \leq C_{\mathbf{B}}^{2}$ for a positive constant $C_{\mathbf{B}}$.

Condition (C3) is employed to replace (6) in Theorem 1. Similar conditions are standard in the literature. Condition (C 4) on \mathbf{B} is used to control the overall interaction effect, which is treated as noise in stage one. $\Lambda_{\max }(\mathbf{B})$ can be bounded, e.g., by $\left\|\boldsymbol{\beta}_{\mathcal{I}}\right\|_{1}$.

Theorem 2 Suppose that conditions (SG), (C1)-(C4) hold. For $\lambda_{n} \gg \tau(\log p / n)^{\frac{1}{2}}$, with probability tending to 1 , the LASSO has a unique solution $\hat{\boldsymbol{\beta}}_{L}$ with support contained within \mathcal{S}. Moreover, if $\beta_{\text {min }}=\min _{j \in \mathcal{S}}\left|\beta_{j}\right|>2\left(s^{-\frac{1}{2}}+\left\|\boldsymbol{\beta}_{\mathcal{I}}\right\|_{2} / s+\lambda_{n} s^{\frac{1}{2}}\right) / C_{\text {min }}$, then $\operatorname{sign}\left(\hat{\boldsymbol{\beta}}_{L}\right)=\operatorname{sign}\left(\boldsymbol{\beta}_{\mathcal{M}}\right)$.

Note that $\left\|\boldsymbol{\beta}_{\mathcal{I}}\right\|_{2}=\operatorname{tr}\left(B^{2}\right) \leq s C_{\mathbf{B}}^{2}$, so $\left\|\boldsymbol{\beta}_{\mathcal{I}}\right\|_{2} / s \leq C_{\mathbf{B}} s^{-\frac{1}{2}}$.

Supplementary B: Proof of Theorem 2

Recall that we use ($W 1$), ($W 2$), ... to denote the formula (1), (2), \ldots in Wainwright (2009). The n-vector $\boldsymbol{\omega}$ is the imaginary noise at Stage 1, which is the sum of the subgaussian noise ε and the interaction effects $\left(\mathbf{u}_{1}^{\top} \boldsymbol{\beta}_{\mathcal{I}}, \ldots, \mathbf{u}_{n}^{\top} \boldsymbol{\beta}_{\mathcal{I}}\right)^{\top}$.

Part I: Verifying strict dual feasibility.
We show that inequality $\left|Z_{j}\right|<1$ holds for each $j \in \mathcal{S}^{c}$, with overwhelming probability, where Z_{j} is defined in (W10). For every $j \in \mathcal{S}^{c}$, conditional on $\mathbf{X}_{\mathcal{S}}$, (W37) gives a
decomposition $Z_{j}=A_{j}+B_{j}$ where

$$
\begin{aligned}
A_{j} & =\mathbf{E}_{j}^{\top}\left\{\mathbf{X}_{\mathcal{S}}\left(\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}\right)^{-1} \check{\mathbf{z}}_{\mathcal{S}}+\Pi_{\mathbf{X}_{\mathcal{S}}}\left(\frac{\boldsymbol{\omega}}{\lambda_{n} n}\right)\right\} \\
B_{j} & =\Sigma_{j \mathcal{S}}\left(\Sigma_{\mathcal{S S}}\right)^{-1} \check{\mathbf{z}}_{\mathcal{S}}
\end{aligned}
$$

where $\mathbf{E}_{j}^{\top}=\mathbf{X}_{j}^{\top}-\Sigma_{j \mathcal{S}}\left(\Sigma_{\mathcal{S S}}\right)^{-1} \mathbf{X}_{\mathcal{S}}^{\top} \in \mathbb{R}^{n}$ with entries $E_{i j}$ that is $2 b$-subgaussian by Proposition 1 and condition (C1).

Condition (C1) implies

$$
\max _{j \in \mathcal{S}^{c}}\left|B_{j}\right| \leq 1-\gamma
$$

Conditional on $\mathbf{X}_{\mathcal{S}}$ and $\boldsymbol{\omega}, A_{j}$ is $2 b M_{n}^{\frac{1}{2}}$-subgaussian, where

$$
M_{n}=\frac{1}{n} \check{\mathbf{z}}_{\mathcal{S}}^{\top}\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)^{-1} \check{\mathbf{z}}_{\mathcal{S}}+\left\|\Pi_{\mathbf{X}_{\overline{\mathcal{S}}}^{\perp}}\left(\frac{\boldsymbol{\omega}}{\lambda_{n} n}\right)\right\|_{2}^{2}
$$

We need the following lemma that is proved in Supplementary C.
Lemma 2 For any $\epsilon \in\left(0, \frac{1}{2}\right)$, define the event $\overline{\mathcal{T}}(\epsilon)=\left\{M_{n}>\bar{M}_{n}(\epsilon)\right\}$, where

$$
\bar{M}_{n}(\epsilon)=\frac{2 s}{C_{\min } n}+\frac{4\left(\sigma^{2}+\tau^{2}\right)}{\lambda_{n}^{2} n}
$$

Then $\mathbf{P}(\overline{\mathcal{T}}(\epsilon)) \leq C_{1} s^{2} \exp \left(-C_{2} n^{\frac{1}{2}} \epsilon^{2}\right)$ for some $C_{1}, C_{2}>0$.

By Lemma 2,

$$
\begin{align*}
\mathbf{P}\left(\max _{j \in \mathcal{S}^{c}}\left|Z_{j}\right| \geq 1\right) & \leq \mathbf{P}\left(\max _{j \in \mathcal{S}^{c}}\left|A_{j}\right| \geq \gamma\right) \\
& \left.\leq \mathbf{P}\left(\max _{j \in \mathcal{S}^{c}}\left|A_{j}\right| \geq \gamma \mid \overline{\mathcal{T}}^{c}(\epsilon)\right)\right)+C_{1} s^{2} \exp \left(-C_{2} n^{\frac{1}{2}} \epsilon^{2}\right) \tag{20}
\end{align*}
$$

Conditional on $\overline{\mathcal{T}}^{c}(\epsilon), A_{j}$ is $2 b \bar{M}_{n}^{\frac{1}{2}}(\epsilon)$-subgaussian, so by Proposition 2

$$
\left.\mathbf{P}\left(\max _{j \in \mathcal{S}^{c}}\left|A_{j}\right| \geq \gamma \mid \overline{\mathcal{T}}^{c}(\epsilon)\right)\right) \leq 2(p-s) \exp \left(-\frac{\gamma^{2}}{8 b^{2} \bar{M}_{n}(\epsilon)}\right)
$$

where the right hand side goes to 0 by condition (C3). Therefore, $\max _{j \in \mathcal{S}^{c}}\left|Z_{j}\right|<1$ holds with probability tending to 1 .

Part II: Sign consistency.
In order to show sign consistency, by Lemma 3 in Wainwright (2009) it is sufficient to show

$$
\begin{equation*}
\operatorname{sign}\left(\beta_{j}+\Delta_{j}\right)=\operatorname{sign}\left(\beta_{j}\right), \quad \text { for all } j \in \mathcal{S} \tag{21}
\end{equation*}
$$

where

$$
\Delta_{j}=\mathbf{e}_{j}^{\top}\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)^{-1}\left[\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \boldsymbol{\omega}-\lambda_{n} \operatorname{sign}\left(\boldsymbol{\beta}_{\mathcal{S}}\right)\right]
$$

It is straightforward that

$$
\begin{aligned}
\max _{j \in \mathcal{S}}\left|\Delta_{j}\right| & \leq\left\|\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)^{-1}\right\|_{2}\left\|\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \boldsymbol{\omega}-\lambda_{n} \operatorname{sign}\left(\boldsymbol{\beta}_{\mathcal{S}}\right)\right\|_{2} \\
& \leq\left\|\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)^{-1}\right\|_{2}\left(\left\|\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \boldsymbol{\varepsilon}\right\|_{2}+\left\|\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \mathbf{y}_{\mathcal{I}}\right\|_{2}+\left\|\lambda_{n} \operatorname{sign}\left(\boldsymbol{\beta}_{\mathcal{S}}\right)\right\|_{2}\right) .
\end{aligned}
$$

By Lemma 3,

$$
\left\|\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)^{-1}\right\|_{2}<2 / C_{\min }
$$

with probability at least $1-s^{2} C_{3} \exp \left(-C_{4} n / s^{2}\right)$. Moreover,

$$
\begin{gathered}
\left\|\lambda_{n} \operatorname{sign}\left(\boldsymbol{\beta}_{\mathcal{S}}\right)\right\|_{2} \leq \lambda_{n} s^{\frac{1}{2}} \\
\left\|\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \mathbf{y}_{\mathcal{I}}\right\|_{2} \leq\left\|\boldsymbol{\beta}_{\mathcal{I}}\right\|_{2} \max _{j, k, \ell \in \mathcal{S}}\left\{\left|\frac{1}{n} \mathbf{X}_{j}^{\top}\left(\mathbf{X}_{k} \star \mathbf{X}_{\ell}\right)\right|\right\}
\end{gathered}
$$

where $\frac{1}{n} \mathbf{X}_{j}^{\top}\left(\mathbf{X}_{k} \star \mathbf{X}_{\ell}\right)$ is a sample third moment. By Remark B. 2 and Lemma B. 5 in Hao \& Zhang (2014),

$$
\mathbf{P}\left(\left|\frac{1}{n} \mathbf{X}_{j}^{\top}\left(\mathbf{X}_{k} \star \mathbf{X}_{\ell}\right)\right|>\epsilon\right) \leq c_{1} \exp \left(-c_{2} n^{\frac{2}{3}} \epsilon^{2}\right)
$$

Because $|\mathcal{S}|=s$, we have

$$
\mathbf{P}\left(\left\|\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \mathbf{y}_{\mathcal{I}}\right\|_{2} \geq\left\|\boldsymbol{\beta}_{\mathcal{I}}\right\|_{2} \epsilon\right) \leq s^{3} c_{1} \exp \left(-c_{2} n^{\frac{2}{3}} \epsilon^{2}\right) .
$$

which, with $\epsilon=1 / s$ leads to

$$
\mathbf{P}\left(\left\|\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \mathbf{y}_{\mathcal{I}}\right\|_{2} \geq\left\|\boldsymbol{\beta}_{\mathcal{I}}\right\|_{2} s^{-1}\right) \leq s^{3} c_{1} \exp \left(-c_{2} n^{\frac{2}{3}} / s^{2}\right)
$$

Similarly,

$$
\mathbf{P}\left(\left\|\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \varepsilon\right\|_{2}>s^{\frac{1}{2}} \epsilon\right)<s c_{3} \exp \left(-c_{4} n \epsilon^{2}\right)
$$

which, with $\epsilon=1 / s$ leads to

$$
\mathbf{P}\left(\left\|\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \boldsymbol{\varepsilon}\right\|_{2}>s^{-\frac{1}{2}}\right)<s c_{3} \exp \left(-c_{4} n / s^{2}\right)
$$

Overall, with probability greater than $1-c_{5} s^{3} \exp \left(-c_{6} n^{\frac{2}{3}} / s^{2}\right)$,

$$
\max _{j \in \mathcal{S}}\left|\Delta_{j}\right| \leq 2\left(s^{-\frac{1}{2}}+\left\|\boldsymbol{\beta}_{\mathcal{I}}\right\|_{2} s^{-1}+\lambda_{n} s^{\frac{1}{2}}\right) / C_{\min }=g\left(\lambda_{n}\right) .
$$

Therefore (21) holds when $\beta_{\min }>g\left(\lambda_{n}\right)$.

Supplementary C: Proof of Lemma 2.

The first summand of M_{n} can be bounded as

$$
\frac{1}{n} \check{\mathbf{z}}_{\mathcal{S}}^{\top}\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)^{-1} \check{\mathbf{z}}_{\mathcal{S}} \leq \frac{2 s}{n C_{\min }}
$$

with probability at least $1-s^{2} C_{3} \exp \left(-C_{4} n / s^{2}\right)$, where C_{3}, C_{4} are positive constants. It directly follows the fact $\left\|\check{\mathbf{z}}_{\mathcal{S}}\right\|_{2}^{2} \leq s$ and Lemma 3 in Supplementary D, which says the largest eigenvalue of $\left(\frac{\mathbf{x}_{\mathcal{S}}^{\top} \mathbf{x}_{\mathcal{S}}}{n}\right)^{-1}$ can be controlled by $2 / C_{\text {min }}$.

For the second summand, because $\Pi_{\mathbf{X}_{\mathcal{S}}}$ is an orthogonal projection matrix and $\boldsymbol{\omega}=\boldsymbol{\varepsilon}+\mathbf{y}_{\mathcal{I}}$, we have

$$
\left\|\Pi_{\mathbf{X}_{\overline{\mathcal{S}}}^{\perp}}\left(\frac{\boldsymbol{\omega}}{\lambda_{n} n}\right)\right\|_{2}^{2} \leq \frac{\|\boldsymbol{\omega}\|_{2}^{2}}{\lambda_{n}^{2} n^{2}} \leq \frac{2}{\lambda_{n}^{2} n} \frac{\|\varepsilon\|_{2}^{2}+\left\|\mathbf{y}_{\mathcal{I}}\right\|_{2}^{2}}{n}
$$

As $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ are IID subgaussian, by Proposition 2, and Lemma B. 4 in Hao \& Zhang (2014), we have

$$
\begin{equation*}
\mathbf{P}\left(\frac{\|\varepsilon\|_{2}^{2}}{n} \leq(1+\epsilon) \sigma^{2}\right) \leq c_{1} \exp \left(-c_{2} n \epsilon^{2}\right) \tag{22}
\end{equation*}
$$

On the other hand,

$$
\left\|\mathbf{y}_{\mathcal{I}}\right\|_{2}^{2}-n \tau^{2}=\sum_{i=1}^{n}\left(\mathbf{u}_{i}^{\top} \boldsymbol{\beta}_{\mathcal{I}}\right)^{2}-\tau^{2}
$$

is a sum of mean zero independent random variables.
Define $W_{i}=\frac{\left(\mathbf{u}_{i}^{\top} \boldsymbol{\beta}_{\mathcal{I}}\right)^{2}}{\tau^{2}}-1$, then $\mathrm{E}\left(W_{i}\right)=0$. By condition (C4),

$$
\mathbf{u}_{i}^{\top} \boldsymbol{\beta}_{\mathcal{I}}=\mathbf{x}_{i}^{\top} \mathbf{B} \mathbf{x}_{i}-\mathrm{E}\left(\mathbf{x}_{i}^{\top} \mathbf{B} \mathbf{x}_{i}\right)=\left(\mathbf{x}_{i}\right)_{\mathcal{S}}^{\top} \mathbf{B}_{\mathcal{S S}}\left(\mathbf{x}_{i}\right)_{\mathcal{S}}-\mathrm{E}\left(\left(\mathbf{x}_{i}\right)_{\mathcal{S}}^{\top} \mathbf{B}_{\mathcal{S S}}\left(\mathbf{x}_{i}\right)_{\mathcal{S}}\right) .
$$

So W_{i} is a degree 4 polynomial of subgaussian variables dominated by $\left[C_{\mathbf{B}}\left(\mathbf{x}_{i}\right)_{\mathcal{S}}^{\top}\left(\mathbf{x}_{i}\right)_{\mathcal{S}}\right]^{2}$, which is, up to the constant $C_{\mathbf{B}}^{2}$, a summation of at most s^{2} degree 4 monomials of subgaussian variables. The tail probability of each of these monomials can be bounded as in Lemma B. 5 in Hao \& Zhang (2014). Therefore, we have

$$
\mathbf{P}\left(\left|\sum_{i=1}^{n} W_{i}\right|>n \epsilon\right) \leq c_{3} s^{2} \exp \left(-c_{4} n^{\frac{1}{2}} \epsilon^{2}\right)
$$

for some positive constants c_{3}, c_{4}. That is

$$
\mathbf{P}\left(\left|\left\|\mathbf{y}_{\mathcal{I}}\right\|_{2}^{2}-n \tau^{2}\right| \geq \tau^{2} n \epsilon\right) \leq c_{3} s^{2} \exp \left(-c_{4} n^{\frac{1}{2}} \epsilon^{2}\right)
$$

which implies

$$
\begin{equation*}
\mathbf{P}\left(\frac{\left\|\mathbf{y}_{\mathcal{I}}\right\|_{2}^{2}}{n} \leq(1+\epsilon) \tau^{2}\right) \leq c_{3} s^{2} \exp \left(-c_{4} n^{\frac{1}{2}} \epsilon^{2}\right) \tag{23}
\end{equation*}
$$

(22) and (23) imply

$$
\mathbf{P}\left(\left\|\Pi_{\mathbf{X}_{\frac{1}{s}}}\left(\frac{\boldsymbol{\omega}}{\lambda_{n} n}\right)\right\|_{2}^{2} \geq(1+\epsilon) \frac{2\left(\sigma^{2}+\tau^{2}\right)}{\lambda_{n}^{2} n}\right) \leq c_{5} s^{2} \exp \left(-c_{6} n^{\frac{1}{2}} \epsilon^{2}\right)
$$

for some positive constants c_{5}, c_{6}. With $\epsilon=1$, the conclusion of Lemma 2 follows.
Supplementary D: Lemma 3 and its proof.

Lemma 3 Under conditions (SG) and (C3), we have

$$
\mathbf{P}\left(\Lambda_{\min }\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)>C_{\min } / 2\right)>1-s^{2} C_{3} \exp \left(-C_{4} n / s^{2}\right) \rightarrow 1
$$

where $C_{\min }=\Lambda_{\min }\left(\Sigma_{\mathcal{S S}}\right), C_{3}>0, C_{4}>0$.

Proof. We need bound

$$
\begin{equation*}
\mathbf{P}\left(\sup _{\|\mathbf{v}\|_{2}=1}\left|\mathbf{v}^{\top}\left(\Sigma_{\mathcal{S S}}-\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}} / n\right) \mathbf{v}\right|>\epsilon\right) . \tag{24}
\end{equation*}
$$

For easy presentation, we assume that the s-vector \mathbf{v} is indexed by \mathcal{S}. Then

$$
\begin{aligned}
& \left|\mathbf{v}^{\top}\left(\Sigma_{\mathcal{S S}}-\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}} / n\right) \mathbf{v}\right| \\
\leq & \sum_{j, k \in \mathcal{S}}\left|v_{j} v_{k}\right|\left|\Sigma_{j k}-\mathbf{X}_{j}^{\top} \mathbf{X}_{k} / n\right| \\
\leq & \|\mathbf{v}\|_{1}^{2} \max _{j, k \in \mathcal{S}}\left|\Sigma_{j k}-\mathbf{X}_{j}^{\top} \mathbf{X}_{k} / n\right| \\
\leq & s \max _{j, k \in \mathcal{S}}\left|\Sigma_{j k}-\mathbf{X}_{j}^{\top} \mathbf{X}_{k} / n\right|
\end{aligned}
$$

So (24) is bounded from above by

$$
\begin{equation*}
\mathbf{P}\left(\max _{j, k \in \mathcal{S}}\left|\Sigma_{j k}-\mathbf{X}_{j}^{\top} \mathbf{X}_{k} / n\right|>\epsilon / s\right) \tag{25}
\end{equation*}
$$

Following Remark B. 2 and Lemma B. 5 in Hao \& Zhang (2014), it is easy to derive

$$
\mathbf{P}\left(\left|\Sigma_{j k}-\mathbf{X}_{j}^{\top} \mathbf{X}_{k} / n\right|>\epsilon\right)<C_{3} \exp \left(-C_{5} n \epsilon^{2}\right),
$$

for constants $C_{3}>0, C_{5}>0$ under subgaussian assumption. Therefore, (25) is further bounded by $s^{2} C_{3} \exp \left(-C_{5} n \epsilon^{2} / s^{2}\right)$. Take $\epsilon=\min \left\{C_{\text {min }} / 2,1 / 2\right\}$, we have

$$
\mathbf{P}\left(\Lambda_{\min }\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)>C_{\min } / 2\right)>1-s^{2} C_{3} \exp \left(-C_{4} n / s^{2}\right) \rightarrow 1
$$

by condition (C3), where $C_{4}=C_{5}\left(\min \left\{C_{\min } / 2,1 / 2\right\}\right)^{2}$.

References

Hao, N. \& Zhang, H. H. (2014). Interaction screening for ultra-high dimensional data. Journal of the American Statistical Association 109, 1285-1301.

Rivasplata, O. (2012). Subgaussian random variables: An expository note .
Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using-constrained quadratic programming (lasso). Information Theory, IEEE Transactions on 55, 2183-2202.

