
Supplementary of “Model Selection for High

Dimensional Quadratic Regression via Regularization”

Supplementary A: Theorem 2

In this supplementary to our paper, we show a generalized version of Theorem 1 without

Gaussian assumption. Similar as in our paper, constants C1, C2,... and c1, c2,... are locally

defined and may take different values in different sections. We start with a brief review of

definition of a subgaussian random variable and its properties.

A random variable X is called b-subgaussian if for some b > 0, E(etX) ≤ eb
2t2/2 for all

t ∈ R. The set of all subgaussian random variables is closed under linear operation by the

following proposition.

Proposition 1 Let Xi be bi-subgaussian for i = 1, ..., n. Then a1X1 + ... + anXn is B-

subgaussian with B =
∑n

i=1 |ai|bi. Moreover, if X1,...,Xn are independent, a1X1 + ...+anXn

is B-subgaussian with B = (
∑n

i=1 a
2
i b

2
i )

1
2 .

Moreover, the tail probability of a subgaussian variable can be well controlled.

Proposition 2 If X is b-subgaussian, then P(|X| > t) ≤ 2e−
t2

2b2 for all t > 0. Moreover,

there exists a positive constant, say a = 1/6b2, such that EeaX
2 ≤ 2.

These well-known results can be found, e.g., in Rivasplata (2012).

Condition (SG) {xi}ni=1 are IID random vectors from an elliptical distribution with marginal

b-subgaussian distribution. Moreover, {εi}ni=1 are IID with b-subgaussian distribution.

1



We still use Σ and ΣAB denote the covariance matrix of xi and its submatrix corresponding

to index sets A and B. B = (Bjk) is the coefficient matrix for interaction effects with

Bjk = βj,k/2, (j 6= k) and Bjj = βj,j. Λmin(A) and Λmax(A) denote the smallest and largest

eigenvalues of a matrix A. We need the following technical conditions:

(C1) (Irrepresentable Condition) ‖ΣScS(ΣSS)−1‖∞ ≤ 1− γ, γ ∈ (0, 1].

(C2) (Eigenvalue Condition) Λmin(ΣSS) ≥ Cmin > 0.

(C3) (Dimensionality and Sparsity) s log p = o(n) and s(log s)
1
2 = o(n

1
3 ).

(C4) (Coefficient Matrix) B is sparse and supported in a submatrix BSS . Λmax(B
2) =

Λmax(B
2
SS) ≤ C2

B for a positive constant CB.

Condition (C3) is employed to replace (6) in Theorem 1. Similar conditions are standard

in the literature. Condition (C4) on B is used to control the overall interaction effect, which

is treated as noise in stage one. Λmax(B) can be bounded, e.g., by ‖βI‖1.

Theorem 2 Suppose that conditions (SG), (C1)-(C4) hold. For λn � τ (log p/n)
1
2 , with

probability tending to 1, the LASSO has a unique solution β̂L with support contained within S.

Moreover, if βmin = minj∈S |βj| > 2(s−
1
2 +‖βI‖2/s+λns

1
2 )/Cmin, then sign(β̂L) = sign(βM).

Note that ‖βI‖2 = tr(B2) ≤ sC2
B, so ‖βI‖2/s ≤ CBs

− 1
2 .

Supplementary B: Proof of Theorem 2

Recall that we use (W1), (W2),... to denote the formula (1), (2),... in Wainwright (2009).

The n-vector ω is the imaginary noise at Stage 1, which is the sum of the subgaussian noise

ε and the interaction effects (u>1 βI , ...,u
>
nβI)

>.

Part I: Verifying strict dual feasibility.

We show that inequality |Zj| < 1 holds for each j ∈ Sc, with overwhelming probabil-

ity, where Zj is defined in (W10). For every j ∈ Sc, conditional on XS , (W37) gives a
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decomposition Zj = Aj +Bj where

Aj = E>j

{
XS(X>SXS)−1žS + ΠX⊥

S

(
ω

λnn

)}
Bj = ΣjS(ΣSS)−1žS ,

where E>j = X>j −ΣjS(ΣSS)−1X>S ∈ Rn with entries Eij that is 2b-subgaussian by Proposition

1 and condition (C1).

Condition (C1) implies

max
j∈Sc
|Bj| ≤ 1− γ.

Conditional on XS and ω, Aj is 2bM
1
2
n -subgaussian, where

Mn =
1

n
ž>S

(
X>SXS
n

)−1
žS +

∥∥∥∥ΠX⊥
S

(
ω

λnn

)∥∥∥∥2
2

.

We need the following lemma that is proved in Supplementary C.

Lemma 2 For any ε ∈ (0, 1
2
), define the event T (ε) = {Mn > Mn(ε)}, where

Mn(ε) =
2s

Cminn
+

4(σ2 + τ 2)

λ2nn
.

Then P(T (ε)) ≤ C1s
2 exp(−C2n

1
2 ε2) for some C1, C2 > 0.

By Lemma 2,

P

(
max
j∈Sc
|Zj| ≥ 1

)
≤ P

(
max
j∈Sc
|Aj| ≥ γ

)
≤ P

(
max
j∈Sc
|Aj| ≥ γ | T c(ε))

)
+ C1s

2 exp(−C2n
1
2 ε2). (20)

Conditional on T c(ε), Aj is 2bM
1
2
n (ε)-subgaussian, so by Proposition 2

P

(
max
j∈Sc
|Aj| ≥ γ | T c(ε))

)
≤ 2(p− s) exp

(
− γ2

8b2Mn(ε)

)
,
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where the right hand side goes to 0 by condition (C3). Therefore, maxj∈Sc |Zj| < 1 holds

with probability tending to 1.

Part II: Sign consistency.

In order to show sign consistency, by Lemma 3 in Wainwright (2009) it is sufficient to

show

sign(βj + ∆j) = sign(βj), for all j ∈ S, (21)

where

∆j = e>j

(
X>SXS
n

)−1 [
1

n
X>Sω − λnsign(βS)

]
.

It is straightforward that

max
j∈S
|∆j| ≤

∥∥∥∥∥
(
X>SXS
n

)−1∥∥∥∥∥
2

∥∥∥∥ 1

n
X>Sω − λnsign(βS)

∥∥∥∥
2

≤

∥∥∥∥∥
(
X>SXS
n

)−1∥∥∥∥∥
2

(∥∥∥∥ 1

n
X>S ε

∥∥∥∥
2

+

∥∥∥∥ 1

n
X>SyI

∥∥∥∥
2

+ ‖λnsign(βS)‖2
)
.

By Lemma 3, ∥∥∥∥∥
(
X>SXS
n

)−1∥∥∥∥∥
2

< 2/Cmin,

with probability at least 1− s2C3 exp(−C4n/s
2). Moreover,

‖λnsign(βS)‖2 ≤ λns
1
2 .

∥∥∥∥ 1

n
X>SyI

∥∥∥∥
2

≤ ‖βI‖2 max
j,k,`∈S

{∣∣∣∣ 1nX>j (Xk ?X`)

∣∣∣∣} ,
where 1

n
X>j (Xk ?X`) is a sample third moment. By Remark B.2 and Lemma B.5 in Hao &

Zhang (2014),

P

(∣∣∣∣ 1nX>j (Xk ?X`)

∣∣∣∣ > ε

)
≤ c1 exp(−c2n

2
3 ε2).
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Because |S| = s, we have

P

(∥∥∥∥ 1

n
X>SyI

∥∥∥∥
2

≥ ‖βI‖2ε
)
≤ s3c1 exp(−c2n

2
3 ε2).

which, with ε = 1/s leads to

P

(∥∥∥∥ 1

n
X>SyI

∥∥∥∥
2

≥ ‖βI‖2s−1
)
≤ s3c1 exp(−c2n

2
3/s2).

Similarly,

P

(∥∥∥∥ 1

n
X>S ε

∥∥∥∥
2

> s
1
2 ε

)
< sc3 exp(−c4nε2),

which, with ε = 1/s leads to

P

(∥∥∥∥ 1

n
X>S ε

∥∥∥∥
2

> s−
1
2

)
< sc3 exp(−c4n/s2).

Overall, with probability greater than 1− c5s3 exp(−c6n
2
3/s2),

max
j∈S
|∆j| ≤ 2

(
s−

1
2 + ‖βI‖2s−1 + λns

1
2

)
/Cmin = g(λn).

Therefore (21) holds when βmin > g(λn). �

Supplementary C: Proof of Lemma 2.

The first summand of Mn can be bounded as

1

n
ž>S

(
X>SXS
n

)−1
žS ≤

2s

nCmin

with probability at least 1 − s2C3 exp(−C4n/s
2), where C3, C4 are positive constants. It

directly follows the fact ‖žS‖22 ≤ s and Lemma 3 in Supplementary D, which says the largest

eigenvalue of
(

X>
SXS
n

)−1
can be controlled by 2/Cmin.

For the second summand, because ΠX⊥
S

is an orthogonal projection matrix and ω = ε+yI ,

we have ∥∥∥∥ΠX⊥
S

(
ω

λnn

)∥∥∥∥2
2

≤ ‖ω‖
2
2

λ2nn
2
≤ 2

λ2nn

‖ε‖22 + ‖yI‖22
n

.
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As {εi}ni=1 are IID subgaussian, by Proposition 2, and Lemma B.4 in Hao & Zhang

(2014), we have

P

(
‖ε‖22
n
≤ (1 + ε)σ2

)
≤ c1 exp

(
−c2nε2

)
. (22)

On the other hand,

‖yI‖22 − nτ 2 =
n∑
i=1

(u>i βI)
2 − τ 2,

is a sum of mean zero independent random variables.

Define Wi =
(u>

i βI)
2

τ2
− 1, then E(Wi) = 0. By condition (C4),

u>i βI = x>i Bxi − E(x>i Bxi) = (xi)
>
SBSS(xi)S − E

(
(xi)

>
SBSS(xi)S

)
.

So Wi is a degree 4 polynomial of subgaussian variables dominated by [CB(xi)
>
S (xi)S ]2, which

is, up to the constant C2
B, a summation of at most s2 degree 4 monomials of subgaussian

variables. The tail probability of each of these monomials can be bounded as in Lemma B.5

in Hao & Zhang (2014). Therefore, we have

P

(∣∣∣∣∣
n∑
i=1

Wi

∣∣∣∣∣ > nε

)
≤ c3s

2 exp(−c4n
1
2 ε2),

for some positive constants c3, c4. That is

P
(∣∣‖yI‖22 − nτ 2∣∣ ≥ τ 2nε

)
≤ c3s

2 exp(−c4n
1
2 ε2),

which implies

P

(
‖yI‖22
n
≤ (1 + ε)τ 2

)
≤ c3s

2 exp
(
−c4n

1
2 ε2
)
. (23)

(22) and (23) imply

P

(∥∥∥∥ΠX⊥
S

(
ω

λnn

)∥∥∥∥2
2

≥ (1 + ε)
2(σ2 + τ 2)

λ2nn

)
≤ c5s

2 exp
(
−c6n

1
2 ε2
)
,

for some positive constants c5, c6. With ε = 1, the conclusion of Lemma 2 follows. �

Supplementary D: Lemma 3 and its proof.
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Lemma 3 Under conditions (SG) and (C3), we have

P

(
Λmin

(
X>SXS
n

)
> Cmin/2

)
> 1− s2C3 exp(−C4n/s

2)→ 1,

where Cmin = Λmin(ΣSS), C3 > 0, C4 > 0.

Proof. We need bound

P

(
sup
‖v‖2=1

|v>(ΣSS −X>SXS/n)v| > ε

)
. (24)

For easy presentation, we assume that the s-vector v is indexed by S. Then

|v>(ΣSS −X>SXS/n)v|

≤
∑
j,k∈S

|vjvk||Σjk −X>j Xk/n|

≤ ‖v‖21 max
j,k∈S
|Σjk −X>j Xk/n|

≤ smax
j,k∈S
|Σjk −X>j Xk/n|

So (24) is bounded from above by

P

(
max
j,k∈S
|Σjk −X>j Xk/n| > ε/s

)
(25)

Following Remark B.2 and Lemma B.5 in Hao & Zhang (2014), it is easy to derive

P
(
|Σjk −X>j Xk/n| > ε

)
< C3 exp(−C5nε

2),

for constants C3 > 0, C5 > 0 under subgaussian assumption. Therefore, (25) is further

bounded by s2C3 exp(−C5nε
2/s2). Take ε = min{Cmin/2, 1/2}, we have

P

(
Λmin

(
X>SXS
n

)
> Cmin/2

)
> 1− s2C3 exp(−C4n/s

2)→ 1,

by condition (C3), where C4 = C5(min{Cmin/2, 1/2})2.
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