Supplementary of “Model Selection for High

Dimensional Quadratic Regression via Regularization”

Supplementary A: Theorem 2

In this supplementary to our paper, we show a generalized version of Theorem 1 without
Gaussian assumption. Similar as in our paper, constants C7, Cs,... and ¢y, co,... are locally
defined and may take different values in different sections. We start with a brief review of

definition of a subgaussian random variable and its properties.

A random variable X is called b-subgaussian if for some b > 0, E(e!*) < /2 for all
t € R. The set of all subgaussian random variables is closed under linear operation by the

following proposition.

Proposition 1 Let X; be b;-subgaussian for i = 1,...n. Then a1 X1 + ... + a, X,, is B-

subgaussian with B =Y, |a;|b;. Moreover, if X1,...,X,, are independent, a; X, + ... + a, X,
1

is B-subgaussian with B = (>, a?b?)>.

i=1"1"1
Moreover, the tail probability of a subgaussian variable can be well controlled.

2
Proposition 2 If X is b-subgaussian, then P(|X| > t) < 2e” 7 for allt > 0. Moreover,
there exists a positive constant, say a = 1/6b*, such that Ee®X* < 2.
These well-known results can be found, e.g., in Rivasplata (2012).

Condition (SG) {x;}, are IID random vectors from an elliptical distribution with marginal

b-subgaussian distribution. Moreover, {¢;}! ; are IID with b-subgaussian distribution.



We still use X and ¥ 45 denote the covariance matrix of x; and its submatrix corresponding
to index sets A and B. B = (Bj;) is the coefficient matrix for interaction effects with
Bji = Bir/2, (j # k) and Bj; = ;. Amin(A) and Apax(A) denote the smallest and largest

eigenvalues of a matrix A. We need the following technical conditions:

(C1) (Irrepresentable Condition) ||Sses(Xss) Moo <1 —7, v € (0,1].
(C2) (Eigenvalue Condition) Apin(Xss) > Crin > 0.
(C3) (Dimensionality and Sparsity) slogp = o(n) and s(log s)z = o(n3).

(C4) (Coefficient Matrix) B is sparse and supported in a submatrix Bss. Apa(B?) =

Apax(BEs) < CF for a positive constant Cp.

Condition (C3) is employed to replace (6) in Theorem 1. Similar conditions are standard
in the literature. Condition (C4) on B is used to control the overall interaction effect, which

is treated as noise in stage one. Ay.(B) can be bounded, e.g., by ||8z]1-

Theorem 2 Suppose that conditions (SG), (C1)-(C4) hold. For X\, > T(logp/n)%, with
probability tending to 1, the LASSO has a unique solution BL with support contained within S.

Morcover, if Buin = minjes | 5] > 2(s ™% + | Bz]l2/s+ Ans?)/Cun, then sign(By) = sign(B).
Note that ||Bz]2 = tr(B?) < sC%, so ||Bzl2/s < Cps2.
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Recall that we use (W1), (W2),... to denote the formula (1), (2),... in Wainwright (2009).
The n-vector w is the imaginary noise at Stage 1, which is the sum of the subgaussian noise

e and the interaction effects (u/ Bz, ...,u} B37)".
Part I: Verifying strict dual feasibility.

We show that inequality |Z;| < 1 holds for each j € S§¢ with overwhelming probabil-
ity, where Z; is defined in (W10). For every j € S¢, conditional on Xg, (W37) gives a



decomposition Z; = A; 4+ B; where

A; = E] {XS(ngs)le + Ty ( A“’ﬂ) }

B, = Yjs(Xss) 'z,

where E;r = XJT—EjS(ESS)_ng € R” with entries E;; that is 2b-subgaussian by Proposition
1 and condition (C1).

Condition (C1) implies

max

jese Bl <1-n

1
Conditional on Xs and w, A; is 20M,; -subgaussian, where

1+ (XIXs\ w
M, =~z (Z522) s+ |0
i (500) e[ (52)

2

2.
We need the following lemma that is proved in Supplementary C.

Lemma 2 For any e € (0, 3), define the event T (e) = {M,, > M,(€)}, where

— 25 4(0? + 72)
M, (e) = :
(€) Chuinn AZn

Then P(T (€)) < C152 exp(—Canze?) for some Cy, Cy > 0.

By Lemma 2,
P (max Z;| > 1) < P (max Al > ’y)
IS jESC

< P (r%%x Al > 7| 7_'C(6))) + C15% exp(—Cané?). (20)
] c

_ 1
Conditional on T (¢), A; is 2bM 2 (¢)-subgaussian, so by Proposition 2

P (x| > 7 1 T0)) < 20— sesp (~ g )



where the right hand side goes to 0 by condition (C3). Therefore, maxjese |Z;| < 1 holds
with probability tending to 1.

Part II: Sign consistency.

In order to show sign consistency, by Lemma 3 in Wainwright (2009) it is sufficient to

show
sign(f8; + A;) =sign(p;), forall j €S, (21)

where

XIXs\ ' [1
A, = ejT < S 8) {Exgw — )\nsign(ﬁg)] .

n

It is straightforward that

XIXs\ ™
max |A;| < ( S S)

jeS n

1
—ng — A\psign(Bs)
n

9 2

XsXs h lXTs
n n"s

2

' (Xan“g)_l

with probability at least 1 — s?Cj3 exp(—Cyn/s?). Moreover,

IN

1
+ H‘XEYI
9 n

n ||Ansign<ﬂs>||2) |
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By Lemma 3,

< 2/C'min?
2

nsign(Bs)ll, < Ans?.

Lot
< 12l g { |17 0600 X0

b

where %X]T(Xk * Xy) is a sample third moment. By Remark B.2 and Lemma B.5 in Hao &
Zhang (2014),

1
-x!
Hn s 2

1
P (‘ﬁxj(xk * X))

> e) < eXp(_an%EQ).



Because |S| = s, we have

1
(G
n

2
> ||ﬂz||26) < s3¢; exp(—conie?).
2

which, with e = 1/s leads to

1
P(|=-XL
(s

2
> [Belas ™ ) < erexpl-cant /7).
2

Similarly,
1
P ([-X¢
(s

which, with € = 1/s leads to

1
P(|=-X!

1 2
> s2e | < scgexp(—cyne’),
2

> Sé) < sczexp(—cyn/s?).
2

Overall, with probability greater than 1 — ¢5s3 exp(—cgn /s2),
max A1 < 2 (573 + Bzllas™ + Aus? ) /Coin = gON).
J€

Therefore (21) holds when Sy, > g(A\,). O
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The first summand of M,, can be bounded as

1+ (XIXs\ 7' 25
— <
nZS ( n 25 = nChin

with probability at least 1 — s2Csexp(—Cyn/s?), where C3, C, are positive constants. It
directly follows the fact ||zs]|3 < s and Lemma 3 in Supplementary D, which says the largest
eigenvalue of (@) can be controlled by 2/C\yin.

For the second summand, because ng is an orthogonal projection matrix and w = e+y7,

h
e WP ol 2 fel3+ lyzl
) S e 2 2 Yz 2
X5 \an /|, = A2n2 T A2n n




As {e;}, are IID subgaussian, by Proposition 2, and Lemma B.4 in Hao & Zhang
(2014), we have

2
P (HEHZ < (1+ 6)02> < cpexp (—eane?) . (22)
n

On the other hand,

n

lyzllz —n7® = (ufBr)* — 7,

i=1

is a sum of mean zero independent random variables.
Define W; = ®82° _ 1 then E(W;) = 0. By condition (C4),
v/ Br = x; Bx; — E(x; Bx;) = (x;)§Bss(x;)s — E ((Xi);BSS(Xi)g) :

So W; is a degree 4 polynomial of subgaussian variables dominated by [Cg(x;)3 (x;)s]?, which
is, up to the constant C3, a summation of at most s* degree 4 monomials of subgaussian
variables. The tail probability of each of these monomials can be bounded as in Lemma B.5
in Hao & Zhang (2014). Therefore, we have

“

for some positive constants c3, ¢4. That is

>

i=1

1
> ne) < c35? exp(—cynze?),

P (|[lyzll3 — n7?| > m%ne) < ¢zs° exp(—canze?),

which implies

2
b (Hyz|!2 <a+ >) < custexp (—eme?). (23)
n

(22) and (23) imply

w
® (| ()

for some positive constants cs, cg. With € = 1, the conclusion of Lemma 2 follows. [J

2

2 2 2
> (1+ 6)%) < c5s% exp (-an%€2> ,
9 A2n

Supplementary D: Lemma 3 and its proof.
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Lemma 3 Under conditions (SG) and (C3), we have

.
P (Amin (X5X8> > C’min/2> >1—§2C, exp(—C’4n/s2) — 1,

n

where Ciin = Apin(Zss), C3 >0, Cy > 0.

Proof. We need bound

[vl2=1

P ( sup v (Sss — XiXs/n)v| > 6) : (24)
For easy presentation, we assume that the s-vector v is indexed by S. Then

v (Zss — X§Xs/n)v|
< Y ol IS — X X /nl

j,keS
< 2 2 — XX
< VI ma S5 — XX/ ]

< L X7
s max 1Xje — X X /n|
So (24) is bounded from above by
L —XT
P (?}Cg}é Xk — X Xg/n| > 6/8) (25)
Following Remark B.2 and Lemma B.5 in Hao & Zhang (2014), it is easy to derive
P (|%% — X;Xk/n] > €) < Cyexp(—Csne?),

for constants C3 > 0, C5 > 0 under subgaussian assumption. Therefore, (25) is further
bounded by s2Cj exp(—Csne®/s?). Take € = min{Cyin/2,1/2}, we have

XIX
P (Amin ( Sn S) > Cmin/Q) > 1 — s*Csexp(—Cyn/s*) — 1,

by condition (C3), where Cy = Cs(min{Cy,;n/2,1/2})%.
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