Supplementary of "Model Selection for High Dimensional Quadratic Regression via Regularization"

Supplementary A: Theorem 2

In this supplementary to our paper, we show a generalized version of Theorem 1 without Gaussian assumption. Similar as in our paper, constants C_1 , C_2 ,... and c_1 , c_2 ,... are locally defined and may take different values in different sections. We start with a brief review of definition of a subgaussian random variable and its properties.

A random variable X is called b-subgaussian if for some b > 0, $E(e^{tX}) \le e^{b^2t^2/2}$ for all $t \in \mathbb{R}$. The set of all subgaussian random variables is closed under linear operation by the following proposition.

Proposition 1 Let X_i be b_i -subgaussian for i = 1, ..., n. Then $a_1X_1 + ... + a_nX_n$ is B-subgaussian with $B = \sum_{i=1}^n |a_i|b_i$. Moreover, if $X_1, ..., X_n$ are independent, $a_1X_1 + ... + a_nX_n$ is B-subgaussian with $B = (\sum_{i=1}^n a_i^2 b_i^2)^{\frac{1}{2}}$.

Moreover, the tail probability of a subgaussian variable can be well controlled.

Proposition 2 If X is b-subgaussian, then $\mathbf{P}(|X| > t) \leq 2e^{-\frac{t^2}{2b^2}}$ for all t > 0. Moreover, there exists a positive constant, say $a = 1/6b^2$, such that $Ee^{aX^2} \leq 2$.

These well-known results can be found, e.g., in Rivasplata (2012).

Condition (SG) $\{\mathbf{x}_i\}_{i=1}^n$ are IID random vectors from an elliptical distribution with marginal *b*-subgaussian distribution. Moreover, $\{\varepsilon_i\}_{i=1}^n$ are IID with *b*-subgaussian distribution. We still use Σ and $\Sigma_{\mathcal{AB}}$ denote the covariance matrix of \mathbf{x}_i and its submatrix corresponding to index sets \mathcal{A} and \mathcal{B} . $\mathbf{B} = (B_{jk})$ is the coefficient matrix for interaction effects with $B_{jk} = \beta_{j,k}/2, (j \neq k)$ and $B_{jj} = \beta_{j,j}$. $\Lambda_{\min}(\mathbf{A})$ and $\Lambda_{\max}(\mathbf{A})$ denote the smallest and largest eigenvalues of a matrix \mathbf{A} . We need the following technical conditions:

- (C1) (Irrepresentable Condition) $\|\Sigma_{\mathcal{S}^c\mathcal{S}}(\Sigma_{\mathcal{S}\mathcal{S}})^{-1}\|_{\infty} \leq 1 \gamma, \ \gamma \in (0, 1].$
- (C2) (Eigenvalue Condition) $\Lambda_{\min}(\Sigma_{SS}) \ge C_{\min} > 0.$
- (C3) (Dimensionality and Sparsity) $s \log p = o(n)$ and $s(\log s)^{\frac{1}{2}} = o(n^{\frac{1}{3}})$.
- (C4) (Coefficient Matrix) **B** is sparse and supported in a submatrix \mathbf{B}_{SS} . $\Lambda_{\max}(\mathbf{B}^2) = \Lambda_{\max}(\mathbf{B}_{SS}^2) \leq C_{\mathbf{B}}^2$ for a positive constant $C_{\mathbf{B}}$.

Condition (C3) is employed to replace (6) in Theorem 1. Similar conditions are standard in the literature. Condition (C4) on **B** is used to control the overall interaction effect, which is treated as noise in stage one. $\Lambda_{\max}(\mathbf{B})$ can be bounded, e.g., by $\|\boldsymbol{\beta}_{\mathcal{I}}\|_{1}$.

Theorem 2 Suppose that conditions (SG), (C1)-(C4) hold. For $\lambda_n \gg \tau (\log p/n)^{\frac{1}{2}}$, with probability tending to 1, the LASSO has a unique solution $\hat{\boldsymbol{\beta}}_L$ with support contained within $\boldsymbol{\mathcal{S}}$. Moreover, if $\beta_{\min} = \min_{j \in \boldsymbol{\mathcal{S}}} |\beta_j| > 2(s^{-\frac{1}{2}} + \|\boldsymbol{\beta}_I\|_2/s + \lambda_n s^{\frac{1}{2}})/C_{\min}$, then $\operatorname{sign}(\hat{\boldsymbol{\beta}}_L) = \operatorname{sign}(\boldsymbol{\beta}_M)$.

Note that $\|\boldsymbol{\beta}_{\mathcal{I}}\|_2 = \operatorname{tr}(B^2) \leq sC_{\mathbf{B}}^2$, so $\|\boldsymbol{\beta}_{\mathcal{I}}\|_2/s \leq C_{\mathbf{B}}s^{-\frac{1}{2}}$.

Supplementary B: Proof of Theorem 2

Recall that we use (W1), (W2),... to denote the formula (1), (2),... in Wainwright (2009). The *n*-vector $\boldsymbol{\omega}$ is the imaginary noise at Stage 1, which is the sum of the subgaussian noise $\boldsymbol{\varepsilon}$ and the interaction effects $(\mathbf{u}_1^{\top}\boldsymbol{\beta}_{\mathcal{I}},...,\mathbf{u}_n^{\top}\boldsymbol{\beta}_{\mathcal{I}})^{\top}$.

Part I: Verifying strict dual feasibility.

We show that inequality $|Z_j| < 1$ holds for each $j \in S^c$, with overwhelming probability, where Z_j is defined in (W10). For every $j \in S^c$, conditional on $\mathbf{X}_{\mathcal{S}}$, (W37) gives a decomposition $Z_j = A_j + B_j$ where

$$A_{j} = \mathbf{E}_{j}^{\top} \left\{ \mathbf{X}_{\mathcal{S}} (\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}})^{-1} \check{\mathbf{z}}_{\mathcal{S}} + \Pi_{\mathbf{X}_{\mathcal{S}}^{\perp}} \left(\frac{\boldsymbol{\omega}}{\lambda_{n} n} \right) \right\}$$
$$B_{j} = \Sigma_{j \mathcal{S}} (\Sigma_{\mathcal{S} \mathcal{S}})^{-1} \check{\mathbf{z}}_{\mathcal{S}},$$

where $\mathbf{E}_{j}^{\top} = \mathbf{X}_{j}^{\top} - \Sigma_{j\mathcal{S}}(\Sigma_{\mathcal{SS}})^{-1}\mathbf{X}_{\mathcal{S}}^{\top} \in \mathbb{R}^{n}$ with entries E_{ij} that is 2*b*-subgaussian by Proposition 1 and condition (C1).

Condition (C1) implies

$$\max_{j \in \mathcal{S}^c} |B_j| \le 1 - \gamma$$

Conditional on $\mathbf{X}_{\mathcal{S}}$ and $\boldsymbol{\omega}$, A_j is $2bM_n^{\frac{1}{2}}$ -subgaussian, where

$$M_n = \frac{1}{n} \check{\mathbf{z}}_{\mathcal{S}}^{\top} \left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n} \right)^{-1} \check{\mathbf{z}}_{\mathcal{S}} + \left\| \Pi_{\mathbf{X}_{\mathcal{S}}^{\perp}} \left(\frac{\boldsymbol{\omega}}{\lambda_n n} \right) \right\|_2^2$$

We need the following lemma that is proved in Supplementary C.

Lemma 2 For any $\epsilon \in (0, \frac{1}{2})$, define the event $\overline{\mathcal{T}}(\epsilon) = \{M_n > \overline{M}_n(\epsilon)\}$, where

$$\overline{M}_n(\epsilon) = \frac{2s}{C_{\min}n} + \frac{4(\sigma^2 + \tau^2)}{\lambda_n^2 n}$$

Then $\mathbf{P}(\overline{\mathcal{T}}(\epsilon)) \leq C_1 s^2 \exp(-C_2 n^{\frac{1}{2}} \epsilon^2)$ for some $C_1, C_2 > 0$.

By Lemma 2,

$$\mathbf{P}\left(\max_{j\in\mathcal{S}^{c}}|Z_{j}|\geq 1\right) \leq \mathbf{P}\left(\max_{j\in\mathcal{S}^{c}}|A_{j}|\geq\gamma\right) \\
\leq \mathbf{P}\left(\max_{j\in\mathcal{S}^{c}}|A_{j}|\geq\gamma\mid\overline{\mathcal{T}}^{c}(\epsilon)\right) + C_{1}s^{2}\exp(-C_{2}n^{\frac{1}{2}}\epsilon^{2}). \quad (20)$$

Conditional on $\overline{\mathcal{T}}^c(\epsilon)$, A_j is $2b\overline{M}_n^{\frac{1}{2}}(\epsilon)$ -subgaussian, so by Proposition 2

$$\mathbf{P}\left(\max_{j\in\mathcal{S}^c}|A_j|\geq\gamma\mid\overline{\mathcal{T}}^c(\epsilon)\right)\right)\leq 2(p-s)\exp\left(-\frac{\gamma^2}{8b^2\overline{M}_n(\epsilon)}\right),$$

where the right hand side goes to 0 by condition (C3). Therefore, $\max_{j \in S^c} |Z_j| < 1$ holds with probability tending to 1.

Part II: Sign consistency.

In order to show sign consistency, by Lemma 3 in Wainwright (2009) it is sufficient to show

$$\operatorname{sign}(\beta_j + \Delta_j) = \operatorname{sign}(\beta_j), \quad \text{for all } j \in \mathcal{S},$$
(21)

where

$$\Delta_j = \mathbf{e}_j^{\top} \left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n} \right)^{-1} \left[\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \boldsymbol{\omega} - \lambda_n \operatorname{sign}(\boldsymbol{\beta}_{\mathcal{S}}) \right].$$

It is straightforward that

$$\begin{aligned} \max_{j \in \mathcal{S}} |\Delta_{j}| &\leq \left\| \left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n} \right)^{-1} \right\|_{2} \left\| \frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \boldsymbol{\omega} - \lambda_{n} \operatorname{sign}(\boldsymbol{\beta}_{\mathcal{S}}) \right\|_{2} \\ &\leq \left\| \left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n} \right)^{-1} \right\|_{2} \left(\left\| \frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \boldsymbol{\varepsilon} \right\|_{2} + \left\| \frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \mathbf{y}_{\mathcal{I}} \right\|_{2} + \left\| \lambda_{n} \operatorname{sign}(\boldsymbol{\beta}_{\mathcal{S}}) \right\|_{2} \right). \end{aligned}$$

By Lemma 3,

$$\left\| \left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n} \right)^{-1} \right\|_{2} < 2/C_{\min},$$

with probability at least $1 - s^2 C_3 \exp(-C_4 n/s^2)$. Moreover,

$$\|\lambda_n \operatorname{sign}(\boldsymbol{\beta}_{\mathcal{S}})\|_2 \le \lambda_n s^{\frac{1}{2}}.$$

$$\left\|\frac{1}{n}\mathbf{X}_{\mathcal{S}}^{\top}\mathbf{y}_{\mathcal{I}}\right\|_{2} \leq \|\boldsymbol{\beta}_{\mathcal{I}}\|_{2} \max_{j,k,\ell\in\mathcal{S}} \left\{ \left|\frac{1}{n}\mathbf{X}_{j}^{\top}(\mathbf{X}_{k}\star\mathbf{X}_{\ell})\right| \right\},\$$

where $\frac{1}{n} \mathbf{X}_{j}^{\top}(\mathbf{X}_{k} \star \mathbf{X}_{\ell})$ is a sample third moment. By Remark B.2 and Lemma B.5 in Hao & Zhang (2014),

$$\mathbf{P}\left(\left|\frac{1}{n}\mathbf{X}_{j}^{\top}(\mathbf{X}_{k}\star\mathbf{X}_{\ell})\right| > \epsilon\right) \leq c_{1}\exp(-c_{2}n^{\frac{2}{3}}\epsilon^{2}).$$

Because $|\mathcal{S}| = s$, we have

$$\mathbf{P}\left(\left\|\frac{1}{n}\mathbf{X}_{\mathcal{S}}^{\top}\mathbf{y}_{\mathcal{I}}\right\|_{2} \geq \|\boldsymbol{\beta}_{\mathcal{I}}\|_{2}\epsilon\right) \leq s^{3}c_{1}\exp(-c_{2}n^{\frac{2}{3}}\epsilon^{2}).$$

which, with $\epsilon = 1/s$ leads to

$$\mathbf{P}\left(\left\|\frac{1}{n}\mathbf{X}_{\mathcal{S}}^{\top}\mathbf{y}_{\mathcal{I}}\right\|_{2} \geq \|\boldsymbol{\beta}_{\mathcal{I}}\|_{2}s^{-1}\right) \leq s^{3}c_{1}\exp(-c_{2}n^{\frac{2}{3}}/s^{2}).$$

Similarly,

$$\mathbf{P}\left(\left\|\frac{1}{n}\mathbf{X}_{\mathcal{S}}^{\top}\boldsymbol{\varepsilon}\right\|_{2} > s^{\frac{1}{2}}\boldsymbol{\epsilon}\right) < sc_{3}\exp(-c_{4}n\boldsymbol{\epsilon}^{2}),$$

which, with $\epsilon = 1/s$ leads to

$$\mathbf{P}\left(\left\|\frac{1}{n}\mathbf{X}_{\mathcal{S}}^{\top}\boldsymbol{\varepsilon}\right\|_{2} > s^{-\frac{1}{2}}\right) < sc_{3}\exp(-c_{4}n/s^{2}).$$

Overall, with probability greater than $1 - c_5 s^3 \exp(-c_6 n^{\frac{2}{3}}/s^2)$,

$$\max_{j \in \mathcal{S}} |\Delta_j| \le 2 \left(s^{-\frac{1}{2}} + \| \boldsymbol{\beta}_{\mathcal{I}} \|_2 s^{-1} + \lambda_n s^{\frac{1}{2}} \right) / C_{\min} = g(\lambda_n).$$

Therefore (21) holds when $\beta_{\min} > g(\lambda_n)$. \Box

Supplementary C: Proof of Lemma 2.

The first summand of M_n can be bounded as

$$\frac{1}{n}\check{\mathbf{z}}_{\mathcal{S}}^{\top}\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top}\mathbf{X}_{\mathcal{S}}}{n}\right)^{-1}\check{\mathbf{z}}_{\mathcal{S}} \leq \frac{2s}{nC_{\min}}$$

with probability at least $1 - s^2 C_3 \exp(-C_4 n/s^2)$, where C_3 , C_4 are positive constants. It directly follows the fact $\|\check{\mathbf{z}}_{\mathcal{S}}\|_2^2 \leq s$ and Lemma 3 in Supplementary D, which says the largest eigenvalue of $\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}}{n}\right)^{-1}$ can be controlled by $2/C_{\min}$.

For the second summand, because $\Pi_{\mathbf{X}_{\mathcal{S}}^{\perp}}$ is an orthogonal projection matrix and $\boldsymbol{\omega} = \boldsymbol{\varepsilon} + \mathbf{y}_{\mathcal{I}}$, we have

$$\left\| \Pi_{\mathbf{X}_{\mathcal{S}}^{\perp}} \left(\frac{\boldsymbol{\omega}}{\lambda_{n} n} \right) \right\|_{2}^{2} \leq \frac{\|\boldsymbol{\omega}\|_{2}^{2}}{\lambda_{n}^{2} n^{2}} \leq \frac{2}{\lambda_{n}^{2} n} \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2} + \|\mathbf{y}_{\mathcal{I}}\|_{2}^{2}}{n}$$

As $\{\boldsymbol{\varepsilon}_i\}_{i=1}^n$ are IID subgaussian, by Proposition 2, and Lemma B.4 in Hao & Zhang (2014), we have

$$\mathbf{P}\left(\frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} \leq (1+\epsilon)\sigma^{2}\right) \leq c_{1}\exp\left(-c_{2}n\epsilon^{2}\right).$$
(22)

On the other hand,

$$\|\mathbf{y}_{\mathcal{I}}\|_2^2 - n\tau^2 = \sum_{i=1}^n (\mathbf{u}_i^\top \boldsymbol{\beta}_{\mathcal{I}})^2 - \tau^2,$$

is a sum of mean zero independent random variables.

Define
$$W_i = \frac{(\mathbf{u}_i^\top \boldsymbol{\beta}_{\mathcal{I}})^2}{\tau^2} - 1$$
, then $E(W_i) = 0$. By condition (C4),
 $\mathbf{u}_i^\top \boldsymbol{\beta}_{\mathcal{I}} = \mathbf{x}_i^\top \mathbf{B} \mathbf{x}_i - E(\mathbf{x}_i^\top \mathbf{B} \mathbf{x}_i) = (\mathbf{x}_i)_{\mathcal{S}}^\top \mathbf{B}_{\mathcal{SS}}(\mathbf{x}_i)_{\mathcal{S}} - E((\mathbf{x}_i)_{\mathcal{S}}^\top \mathbf{B}_{\mathcal{SS}}(\mathbf{x}_i)_{\mathcal{S}})$

So W_i is a degree 4 polynomial of subgaussian variables dominated by $[C_{\mathbf{B}}(\mathbf{x}_i)_{\mathcal{S}}^{\top}(\mathbf{x}_i)_{\mathcal{S}}]^2$, which is, up to the constant $C_{\mathbf{B}}^2$, a summation of at most s^2 degree 4 monomials of subgaussian variables. The tail probability of each of these monomials can be bounded as in Lemma B.5 in Hao & Zhang (2014). Therefore, we have

$$\mathbf{P}\left(\left|\sum_{i=1}^{n} W_{i}\right| > n\epsilon\right) \le c_{3}s^{2}\exp(-c_{4}n^{\frac{1}{2}}\epsilon^{2}),$$

for some positive constants c_3 , c_4 . That is

$$\mathbf{P}\left(\left|\|\mathbf{y}_{\mathcal{I}}\|_{2}^{2}-n\tau^{2}\right| \geq \tau^{2}n\epsilon\right) \leq c_{3}s^{2}\exp(-c_{4}n^{\frac{1}{2}}\epsilon^{2}),$$

which implies

$$\mathbf{P}\left(\frac{\|\mathbf{y}_{\mathcal{I}}\|_{2}^{2}}{n} \le (1+\epsilon)\tau^{2}\right) \le c_{3}s^{2}\exp\left(-c_{4}n^{\frac{1}{2}}\epsilon^{2}\right).$$
(23)

(22) and (23) imply

$$\mathbf{P}\left(\left\|\Pi_{\mathbf{X}_{\mathcal{S}}^{\perp}}\left(\frac{\boldsymbol{\omega}}{\lambda_{n}n}\right)\right\|_{2}^{2} \ge (1+\epsilon)\frac{2(\sigma^{2}+\tau^{2})}{\lambda_{n}^{2}n}\right) \le c_{5}s^{2}\exp\left(-c_{6}n^{\frac{1}{2}}\epsilon^{2}\right),$$

for some positive constants c_5 , c_6 . With $\epsilon = 1$, the conclusion of Lemma 2 follows. \Box Supplementary D: Lemma 3 and its proof. **Lemma 3** Under conditions (SG) and (C3), we have

$$\mathbf{P}\left(\Lambda_{\min}\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top}\mathbf{X}_{\mathcal{S}}}{n}\right) > C_{\min}/2\right) > 1 - s^2 C_3 \exp(-C_4 n/s^2) \to 1,$$

where $C_{\min} = \Lambda_{\min}(\Sigma_{SS}), C_3 > 0, C_4 > 0.$

Proof. We need bound

$$\mathbf{P}\left(\sup_{\|\mathbf{v}\|_{2}=1} |\mathbf{v}^{\top} (\Sigma_{SS} - \mathbf{X}_{S}^{\top} \mathbf{X}_{S}/n) \mathbf{v}| > \epsilon\right).$$
(24)

For easy presentation, we assume that the s-vector \mathbf{v} is indexed by \mathcal{S} . Then

$$\begin{aligned} & |\mathbf{v}^{\top} (\Sigma_{SS} - \mathbf{X}_{S}^{\top} \mathbf{X}_{S}/n) \mathbf{v}| \\ \leq & \sum_{j,k \in S} |v_{j} v_{k}| |\Sigma_{jk} - \mathbf{X}_{j}^{\top} \mathbf{X}_{k}/n| \\ \leq & \|\mathbf{v}\|_{1}^{2} \max_{j,k \in S} |\Sigma_{jk} - \mathbf{X}_{j}^{\top} \mathbf{X}_{k}/n| \\ \leq & s \max_{j,k \in S} |\Sigma_{jk} - \mathbf{X}_{j}^{\top} \mathbf{X}_{k}/n| \end{aligned}$$

So (24) is bounded from above by

$$\mathbf{P}\left(\max_{j,k\in\mathcal{S}}|\Sigma_{jk}-\mathbf{X}_{j}^{\top}\mathbf{X}_{k}/n| > \epsilon/s\right)$$
(25)

Following Remark B.2 and Lemma B.5 in Hao & Zhang (2014), it is easy to derive

$$\mathbf{P}\left(|\Sigma_{jk} - \mathbf{X}_{j}^{\top}\mathbf{X}_{k}/n| > \epsilon\right) < C_{3}\exp(-C_{5}n\epsilon^{2}),$$

for constants $C_3 > 0$, $C_5 > 0$ under subgaussian assumption. Therefore, (25) is further bounded by $s^2C_3 \exp(-C_5 n\epsilon^2/s^2)$. Take $\epsilon = \min\{C_{\min}/2, 1/2\}$, we have

$$\mathbf{P}\left(\Lambda_{\min}\left(\frac{\mathbf{X}_{\mathcal{S}}^{\top}\mathbf{X}_{\mathcal{S}}}{n}\right) > C_{\min}/2\right) > 1 - s^2 C_3 \exp(-C_4 n/s^2) \to 1,$$

by condition (C3), where $C_4 = C_5 (\min\{C_{\min}/2, 1/2\})^2$.

References

- HAO, N. & ZHANG, H. H. (2014). Interaction screening for ultra-high dimensional data. Journal of the American Statistical Association 109, 1285–1301.
- RIVASPLATA, O. (2012). Subgaussian random variables: An expository note.
- WAINWRIGHT, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using-constrained quadratic programming (lasso). Information Theory, IEEE Transactions on 55, 2183–2202.