Comparison of solid tissue sequencing and liquid biopsy accuracy in identification of clinically relevant gene mutations and rearrangements in lung adenocarcinomas


Screening for therapeutic targets is standard of care in the management of advanced non-small cell lung cancer. However, most molecular assays utilize tumor tissue, which may not always be available. “Liquid biopsies” are plasma-based next generation sequencing (NGS) assays that use circulating tumor DNA to identify relevant targets. To compare the sensitivity, specificity, and accuracy of a plasma-based NGS assay to solid-tumor-based NGS we retrospectively analyzed sequencing results of 100 sequential patients with lung adenocarcinoma at our institution who had received concurrent testing with both a solid-tissue-based NGS assay and a commercially available plasma-based NGS assay. Patients represented both new diagnoses (79%) and disease progression on treatment (21%); the majority (83%) had stage IV disease. Tissue-NGS identified 74 clinically relevant mutations, including 52 therapeutic targets, a sensitivity of 94.8%, while plasma-NGS identified 41 clinically relevant mutations, a sensitivity of 52.6% (p<0.001). Tissue-NGS showed significantly higher sensitivity and accuracy across multiple patient subgroups, both in newly diagnosed and treated patients, as well as in metastatic and nonmetastatic disease. Discrepant cases involved hotspot mutations and actionable fusions including those in EGFR, ALK, and NTRK1. In summary, tissue-NGS detects significantly more clinically relevant alterations and therapeutic targets compared to plasma-NGS, suggesting that tissue-NGS should be the preferred method for molecular testing of lung adenocarcinoma when tissue is available. Plasma-NGS can still play an important role when tissue testing is not possible. However, given its low sensitivity, a negative result should be confirmed with a tissue-based assay.

Modern Pathology