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Abstract—Repeated patterns (such as windows, balconies, and doors) are

prominent and significant features in urban scenes. Therefore, detection of these

repeated patterns becomes very important for city scene analysis. This paper

attacks the problem of repeated pattern detection in a precise, efficient and

automatic way, by combining traditional feature extraction with a Kronecker product

based low-rankmodel. We introduced novel algorithms that extract repeated

patterns from rectified images with solid theoretical support. Our method is tailored

for 2D images of building façades and tested on a large set of façade images.

Index Terms—Repeated pattern detection, low-rank, Kronecker product model,

urban façade

Ç

1 INTRODUCTION

URBAN scenes contain rich periodic or near-periodic structures,
such as windows, doors, and other architectural features. Detection
of periodic structures is useful in many applications such as photo-
realistic 3D reconstruction, 2D-to-3D alignment, façade parsing,
city modeling, classification, navigation, visualization in 3D map
environments, shape completion, cinematography and 3D games.
However, it is a challenging task due to scene occlusion, varying
illumination, pose variation and sensor noise.

A pre-processing rectification step is common to all façade pars-
ing algorithms. This work also relies on such a pre-processing step
based on the methods presented in [1] and [2]. Our pipeline focuses
on the detection of repeated patterns in rectified facade images
(Sections 3 and 4). State-of-the-art methods use classification [3], sta-
tistical and grammar-based approaches [4] and [5], as well as feature-
based symmetry [6].We, on the other hand, provide a novel detection
method tomodel repetition as a Kronecker product.

2 RELATED WORK

In recent years, repeated pattern or periodic structure detection has
received significant attention in both 2D images ([4], [7]) and 3D
point clouds ([8], [9]). Repeated patterns are usually hypothesized
from the matching of local image features. They can be modeled as
a set of sparse repeated features [10] in which the crystallographic
group theory [11] was employed. [12] maximizes local symmetries
and separates different repetition groups via evaluating the local
repetition quality conditionally for different repetition intervals.

Muller et al. [13] proposes an approach to detect symmetric
structures in a rectified fronto-façade and to reconstruct a 3D geo-
metric model. The work of [3] describes a method for periodic
structure detection upon the pixel-classification results of a recti-
fied façade. Shape grammars have also been used for 2D façade
parsing [4]. Other grammar-based approaches include [14].

Moreover, [15] and [5] addressed the façade parsing problem
using shape grammar learning. More recently, [16] proposed a
parsing method using dynamic programming. Inspired by [16], [6]
developed a method to leverage symmetry and repetitions for
façade parsing with occlusions.

All the above-mentioned methods require image rectification as
a pre-processing step. To solve this problem, low-rank methods
were used and attracted a lot of attention in recent years [2]. A sim-
ilar work was proposed by [17] in which the rank value N is
assumed known. Another method for the recovery of both low-
rank and the sparse components is presented in [18]. Finally, [19]
describes a low-rank based method that detects the repeated pat-
terns in 2D images for the application of shape completion.

3 FAÇADE MODELING VIA KRONECKER PRODUCTS

In this section we describe a Kronecker product modeling approach
which is applied on a rectified façade image. It is a novel representa-
tion that describes a large subset of façade examples.

3.1 Ideal Façade Modeling
Let us consider the partition of all-ones matrix 1lv!lh of size lv ! lh by
using the following mutually exclusive 1" 0 matrices Mk; k ¼ 1;
2; $ $ $ ; K of size lv ! lh:

< vecfMkg; vecfMlg >¼
jjvecfMkgjj0; k ¼ l;

0; k 6¼ l;

(

(1)

XK

k¼1

Mk ¼ 1lv ! lh ; (2)

where vecfXg, < x; y > and jjxjj0 denote the column-wise vectoriza-
tion of matrix X, the inner product of vectors x; y and the l0 norm of
vector x, respectively. As it is clear from Eqs. (1)–(2), different choices
of matrices Mk result in different partitions of matrix 1lv!lh . Let us
nowassociatewith each componentMk; k ¼ 1; 2; . . . ; K of the par-
tition of matrix 1lv!lh defined in Eq. (2), a 2-D pattern Pk of size
Nv !Nh that is going to be repeated according to Mk. The patterns
should have a piecewise constant surface form, with example struc-
tures includingwindows, doors and balconies.

We now define a subset of building façades that can be
expressed as a sum of Kronecker products:

FN!M ¼
XK

k¼1

!kðMk & PkÞ; (3)

where X& Y is the Kronecker product of matrices X; Y and !k; k ¼
1; 2; $ $ $ ;K are weights. Here,N !M is the size of the urban building
façade image. It is obvious that N ¼ lvNv and M ¼ lhNh. The urban
building façade’s model defined in Eq. (3) can be used even in cases
where there is no periodic structure.

Generalizing Eq. (3) to include a “wall” gray level !0, we get:

FN!M ¼ !01N!M þ
XK

k¼1

!kðMk & PkÞ: (4)

Using the fact that the components of the partition of array 1lv!lh
of Eq. (2) are mutually exclusive, we rewrite Eq. (4) as:
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FN!M ¼
XK

k¼1

!kðMk & P̂kÞ; P̂k ¼ Pk þ
!0

!k
1Nv!Nh

; (5)

where P̂k are modified patterns as defined above.

3.2 Façade Model Approximation
In this section we would like to compute the components of the
Kronecker product that generate an ideal (i.e. noise-free) building
façade FN!M 2 RN!M with N ¼ lvNv and M ¼ lhNh. Using the

model of Eq. (5) we can define the following cost function:

CF ðMk; P̂k; !k; k ¼ 1; $ $ $ ; KÞ ¼ jjFN!M " FN!M jj22

¼
!!!!

!!!!FN!M "
XK

k¼1

!kðMk & P̂kÞ
!!!!

!!!!
2

2

;
(6)

where k $ k2 represents the Frobenius norm of a matrix. As it is clear
from its definition, CF ð:Þ is a Frobenius norm based cost function
that quantifies the error between the given matrix FN!M and the
model FN!M .

Therefore, the modeling problem of the given façade FN!M can
be expressed by the following minimization problem

min
Mk; P̂k; !k; k ¼ 1; $$$; K

CF ðMk; P̂k; !k; k ¼ 1; $ $ $ ; KÞ; (7)

which is known as the nearest Kronecker product problem [20].
The following partition of FN!M is key to the solution of Eq. (7):

FN!M ¼
F11 F12 $ $ $ F1lh
..
. ..

. . .
. ..

.

Flv1 Flv2 $ $ $ Flvlh

2

64

3

75; (8)

where Fij is a block of size Nv !Nh. Define matrix

Alvlh!NvNh
¼ vecfF11g vecfF21g . . . vecfFlvlhg

" #T
; (9)

which constitutes a rearrangement of FN!M . Using the above
defined quantities, the cost function of Eq. (6) can be expressed as:

CF ðmk; p̂k; !k; k ¼ 1; $ $ $ ;KÞ ¼ jjAlvlh!NvNh
"
XK

k¼1

!kmkp̂
T
k jj

2
2; (10)

where mk; p̂k are the column-wise vectorized forms of Mk, P̂k. By
exploiting the above defined equivalent form of the cost function,
the Kronecker Product SVD [20] can be used to solve the optimiza-
tion problem in Eq. (7):

Theorem 1. Let Alvlh!NvNh
¼ VSUT be the Singular Value Decomposi-

tion (SVD) of the rearranged counterpart of matrix FN!M . Consider
the following diagonal matrix

SK ¼ diag s1 s2 $ $ $ sKf g (11)

containing the firstK singular values of matrixAlvlh!NvNh
, and let

VK ¼ ½v1 v2 $ $ $ vK +; UK ¼ ½u1 u2 $ $ $uK + (12)

be the K associated left and right singular vectors respectively. Then,
the matrices M

?

k , the patterns P̂
?

k , and the weighting factors !?

k that
satisfy:

vecfM?

kg ¼ vk; vecfP̂
?

kg ¼ uk;!
?

k ¼ sk; k ¼ 1; $ $ $ ;K; (13)

constitute the solution of the Eq. (7).

Using Theorem 1, we can find an optimal approximation in the
desired form, i.e. it is a sum of Kronecker products, that minimizes
the cost function defined in Eq. (6). Note, however, that some of the
characteristics of the optimal solution are not consistent with the
ingredients of the model defined in Eq. (4), which makes the direct

use of Theorem 1 problematic. In particular, neither the matricesM
?

k

nor the patterns P̂
?

k have the desired form in general, i.e. they are not
1-0matrices and piecewise constant surfaces, respectively.

In order to impose one of the requirements of the proposed
model, in the sequel we assume that matrices Mk have the desired
1-0 form and are known. We thus form the cost function:

ĈF ðP̂k; !k; k ¼ 1; $ $ $ ;KjMkÞ; (14)

which is the cost function of Eq. (6) but with the partition matrices
known. We would like to minimize it with respect to the patterns Pk

and the weighting factors !k. The solution of the new optimization
problem is the subject of Lemma 1 (refer to supplemental material for
proof).

Lemma 1. Assuming that the matrices Mk; k ¼ 1; 2; $ $ $ ; K defined in
Eqs. (1-2) are known, then the minimization of the cost function
defined in Eq. (14) produces patterns P̂k and weighting factors !k that
are related as follows:

!
?

kvecfP̂
?

kg ¼
USVT vecfMkg
jjvecfMkgjj22

; k ¼ 1; 2; $ $ $ ;K: (15)

Lemma 1 is a powerful tool that can be used for solving the model-
ing problem of urban building façades. However, knowledge on
the partitioning 1" 0 matrices Mk; k ¼ 1; $ $ $ ;K, is required. In the
next section, inspired by Eq. (15), we present an algorithm to esti-
mate them, which leads to the solution of the minimization prob-
lem in Eq. (7).

4 ALGORITHM

Our algorithm starts with the estimation of the spatial periods Nv

and Nh (Section 4.1), and continues with the estimation of K along
with the actual partition matrices, pattern matrices and weights
(Section 4.2) and concludes with pattern refinement (Section 4.3).

4.1 Estimation of Spatial Periods
In the first stage of our algorithm, we estimate the spatial periods of
the patterns. Although well known methods ([8], [9]) can be used
for that purpose, we propose a K-means based algorithm to esti-
mate the spatial periods in an efficient way.

Intuitively the spatial period indicates the distance two consecu-
tive repeated patterns span, thus finding similar patterns and their
position is critical for computing the spatial period. When patterns
(like windows and doors) in a façade repeat in a specific period, the
wall patches betweenwindows repeat in the same period.

In order to compute the spatial period along horizontal direction,
we can measure the repetition of vertical vectors (columns) of the
input image. Similarly, we measure the repetition of horizontal vec-
tors (rows) for computing vertical spatial periods. We propose a
method that iteratively estimates the number of different repeated
vectors and optimal spatial period. We use a K-means clustering to
estimate the periods along both vertical and horizontal directions.
Assume that we are given the desired number of clusters (denote it
by L) to which we will group the rows of F. Define the following set
consisting ofL clusters:

Rl ¼ fbT
q : jjbT

q " !dT
l jj

2
2 , jjbT

q " !dT
k jj

2
2; 8 1 , k , Lg;

l ¼ 1; 2; $ $ $ ; L;
(16)

where bT
q denotes the q-th row of matrix F, and !dT

l denotes the
mean of the l-th cluster of the rows computed byK-means.

Let us also define the corresponding indicator vectors of lengthN :

IRl
½q+ ¼ 1 if bT

q 2 Rl;
0 otherwise;

$
where q ¼ 1; 2; $ $ $ ;N: (17)
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and the element-wisemedian vectors of each cluster:

!rTl ¼ medianfRlg; l ¼ 1; 2; $ $ $ ; L: (18)

In order to be consistent with Lemma 1, Eq. (18) should be using
the mean, since it provides the optimal result assuming an ideal
noise-free case. However, due to variations caused by occlusions
(such as trees, traffic lights, etc.) or shadows and lighting changes,
the median is proven more robust in our empirical studies.

We can now define the following matrix:

FR ¼
XL

l¼1

IRl
!rTl ; (19)

which has the same size as F. More importantly, if the given number
of clusters Lwere the correct one, then L should be equal to the rank
of F. If, on the other hand, L is greater than the rank of F, then the
rank of FR will be smaller than L. Hence, by computing the number
of clusters as:

L ¼ rankðFRÞ; (20)

and repeating the above procedure, we expect that after some itera-
tions, FR will be the desired approximation of F.

Algorithm 1. Kronecker Façade Modeling, Noise-Free Ideal
Case. Input: F

1: Initialize L: L rankðFÞ " 1
2: repeat
3: Form clustersRl; l ¼ 1; $ $ $ ; L viaK-means (16)
4: Form the indicator vectors IRl

of (17)
5: Form the median vectors !rT

l
of (18)

6: Compute the matrix FR defined in (19)
7: Compute its rank L in (20)
8: Assign FR to F
9: until convergence
10: Output: F

?

R; L? , IRl
.

Note that !rt
l
; l ¼ 1; 2; $ $ $ ; L? are the rows of F

?

R.

Unfortunately, Lemma 1 does not guarantee that the patterns are
piece-wise constant. One way to enforce that constraint is to force the
clustering in the columns of F aswell.We thus consider thematrix:

G ¼ 1

2
ðFC þ FRÞ (21)

and the new number of the clusters:

L ¼ minfrankðFRÞ; rankðFCÞg; (22)

where FC is the column-wise clustering result. It is obtained by fol-
lowing the sameK-means clustering, but now in the columns:

Cl ¼ fbp : jjbp " !eljj22 , jjbp " !emjj22; 8 1 , m , Lg;
l ¼ 1; 2; $ $ $ ; L;

(23)

where bp denotes the p-th column of matrix F, and !ek denotes the
mean of the k-th cluster of the columns respectively. The corre-
sponding indicator vectors of lengthM is defined as:

ICl ½p+ ¼
1; if bp 2 Cl;
0; otherwise,

$
where p ¼ 1; $ $ $ ;M: (24)

and the element-wisemedian vectors of each cluster:

!cl ¼ medianfClg; l ¼ 1; 2; $ $ $ ; L: (25)

Then,

FC ¼
XL

l¼1

!clI
T
Cl : (26)

The algorithm is summarized as follows.

Here, we stop the iteration when kGi "Gi"1k2 is sufficiently
small, where Gi denotes the G obtained in the ith iteration, or the
number of iterations reaches a pre-specified number.

In order to estimate the spatial periods, we run Algorithm 2 for
an initial L0 of the parameter L with input F. The initial value L0

can be any number that is slightly smaller than the rank of F for
convergence. Then, we can compute the following:

jjIRk?
jj0 ¼ max

k¼1;2;$$$;L?
jjIRk
jj0

% &
; (27)

jjICl? jj0 ¼ max
l¼1;2;$$$;L?

jjICl jj0
% &

; (28)

and the corresponding auto-correlation sequences:

rRk?
¼ IR?

k
- IR?

k
; (29)

cCk? ¼ IC?l - IC?l ; (30)

where ‘‘ - ’’ denotes the correlation operator. Note that the vectors
involved in the computation of the proposed auto-correlation
sequences are based on indicator vectors, that is 1" 0 vectors. We
then calculate the distances between adjacent peaks for rRk?

and
cCk? sequence respectively. Finally, the spatial periods Nv and Nh

are estimated as the mode of the set of distances, which represents
the most robust choice.

Algorithm 2. Kronecker Façade Modeling. Input: F

1: Initialize L: L rankðFÞ " 1
2: repeat
3: Form clusters Rl; Cl; l ¼ 1; $ $ $ ; L via K-means using (16)

and (23)
4: Form the indicator vectors IRl

; ICl of (17), (24)
5: Form the median vectors !rT

l
;!cl of (18), (25)

6: Form the matrices FR; FC andG of (19), (26) and (21)
7: Set L using (22)
8: AssignG to F
9: until convergence
10: Output: F

?

R; L? , IRl
, ICl .

Note that !rt
l
; l ¼ 1; 2; $ $ $ ; L? are the rows of F

?

R.

The results for the urban building façade in Fig. 2 (top), are
shown in Fig. 1. The façade can be partitioned into blocks by using
the estimated spatial periods, as illustrated in Fig. 2.

4.2 Estimation ofK by Unbiased Estimator of the Degrees
of Freedom

Given the computed Nv and Nh, we can rearrange the façade F into
A as described in Eq. (9) (see a representative image in the supple-
mental material).

If the façade contains repeated patterns, then the partition blocks
can be clustered into groups. Aswe have re-arranged the partitioned
blocks into vectors, each group of repeated patterns is in the form of
a group of repeated vectors in A. Thus K represents the rank of A
and the problem reduces to the estimation of rank of A. Therefore
the problem can be formed as the following statistical problem of
finding the correct rank of a perturbed low-rank matrix: given a
noisy observation A ¼ A. þ E, the goal is to estimate an m1 !m2

matrix A., where m1 ¼ lvlh, m2 ¼ NvNh and rankðA.Þ ¼ K. We

Fig. 1. Estimation of the spatial periods of façade shown in Fig. 2. Left: Auto-Corre-
lation sequences used for the estimation of Nv ¼ 90 pixels. Right: Estimation of
Nh ¼ 56 pixels.
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assume that the noise matrix E follows a matrix normal distribution

whereEij /i:i:d: Nð0; t2Þ andm1 , m2 so that the full rank ism1.
A K-means clustering based iterative algorithm was used in [1]

to estimate the rank of A. However, the K-means based approach
is computationally expensive and unstable in cases where there
is occlusion caused by illumination or shadows. In [21], an
approach was proposed to address this problem via Degrees of
Freedom estimators in an efficient and reliable way. Based on this
idea, we will describe a statistical technique that estimates the rank
K of A.

In [22] and [23], a rigorous definition of degrees of freedom in
the framework of Stein’s Unbiased Risk Estimate (SURE) was pro-
vided. For the classical linear regression, degrees of freedom is
often associated with the number of variables in the model. How-
ever the parallel interpretation is unclear in the context of low rank
matrix estimation problems where the estimators are highly non-
linear in nature. The number of free parameters in specifying a low
rank matrix is often used as the degrees of freedom in this case. It
was shown in [21] that the number of free parameters incorrectly
measures the complexity of the rank constrained estimator.

Let A ¼ USV> be the SVD of A. The estimator of A with rank
K, denoted as ÂK , is defined as:

ÂK ¼
XK

k¼1

skukv
>
k ; (31)

where uk and vk are the kth column of U and V respectively.
The formal definition of the optimization function for estimat-

ingK is formulated as:

‘ðÂKÞ ¼ kÂK "A.k22 ¼ kÂK " ðA" EÞk22
¼ kÂK "Ak22 þ 2! hÂK "A;Eiþ kEk22
¼ kÂK "Ak22 þ 2! hÂK;Ei

þ ðterms not depending on ÂKÞ; (32)

where K 2 f1; $ $ $ ;m1g is a tuning parameter and h$; $i stands for
the inner product. The first term measures the goodness of fit of
ÂK to the observation A. The second term can be interpreted as the
cost of the estimating procedure and can be estimated by using
degrees of freedom as shown in [21].

dfðÂKÞ ¼
1

t2

Xm1

i¼1

Xm2

j¼1

covðÂKij;EijÞ: (33)

We refer the interested readers to [22] and [23] for further dis-
cussions about the general theory regarding degrees of freedom.
Once the degrees of freedom are defined, the rank estimator can be
constructed by using the following Cp type statistic:

CpðÂKÞ ¼ kÂK "Ak22 þ 2t2dfðÂKÞ; (34)

where t2 is defined as varðÂ ~K "AÞ, and Â ~K corresponds to a low-
rank estimate which explains ! proportion of the total variance,
where 0 , ! , 1. Here, we fix ! ¼ 0:935 through all the experiments.

Usually, the degrees of freedomdefined in Eq. (33) are not directly
computable. The unbiased estimator proposed in [24] lacks analytical
expressions and requires numerical methods such as data perturba-
tion and resampling techniques which are computationally prohibi-
tive in large scale problems. For our specific rank regularized
estimation problem, we employ the following unbiased estimator of
degrees of freedom (see details in Theorem 1 of [21]):

d̂fðÂKÞ ¼ ðm1 þm2 "KÞK þ 2
XK

k¼1

Xm1

l¼Kþ1

s2
l

s2
k " s2

l

: (35)

Using Eq. (35), we arrive at the following estimator of the Cp statis-
tic for each candidate rankK:

ĈpðÂKÞ ¼ kÂK "Ak22 þ 2t2d̂fðÂKÞ: (36)

The estimated rankK
? is then defined as follows:

K
? ¼ argmin1,K,m1 ĈpðÂKÞ: (37)

The quantity ĈpðÂKÞ as a function of K for the façade in Fig. 2
(top) is shown in Fig. 3. As we described in Section 3, each row of
this low-rank matrix indicates one partition block of the input
façade. By reshaping each row to a matrix in the original partition
block size and re-arranging the blocks in their original order, we
obtain a ”clean” façade image where the noise and occlusions have

Fig. 2. Top: Partitioning the façade into blocks using the spatial periods estimated
in Fig. 1, where the green lines shows the boundary of partition blocks. Bottom:
The corresponding 3! 10 blocks viewed independently.

Fig. 3. Rank estimation result for the image shown in Fig. 2. Top: Plot of the func-
tion in Eq. (36), where the global minimum comes up at index 4. Bottom: The
enlarged figure area within the green box in (a), which shows the global minimum
in a clearer way.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 9, SEPTEMBER 2019 2269



been largely removed, as shown in Fig. 4 (bottom). Simultaneously
these re-shaped patterns can be easily clustered into K groups as
illustrated in Fig. 4.

The algorithm described in this section can be summarized as
follows.

Algorithm 3. Kronecker Façade Modeling: estimating rank K.
Input: A of size m1 !m2. A is the rearranged matrix as defined
in Eq. (9).

1: Cmin  1,K?  m1

2: Compute the SVD of A, A ¼ USV>

3: forK ¼ 1 tom1 do

4: ÂK  
PK

k¼1 skukv>k
5: f1ðKÞ kÂK "Ak22
6: d̂fðAKÞ ðm1 þm2 "KÞK þ 2

PK
k¼1

Pm1
l¼Kþ1

s2
l

s2
k
"s2

l
7: t2  varðÂK "AÞ
8: CpðKÞ f1ðKÞ þ 2t2dfðKÞ
9: if CpðKÞ < Cmin then

10: Cmin  CpðKÞ,K?  K

11: end if
12: end for
13: Output: ÂK? ;K

? .

We apply K-means to the rows of the matrix ÂK? with K
? clus-

ters. The result can be represented in terms of length-lh ! lv indicator
vectors (similar to Eq. (17)) which are denoted as m?

k; k ¼ 1; $ $ $ ;K? ,
i.e.m?

kðiÞ has value 1 if and only if the row i belongs to cluster k. The
mean vector for cluster k from the K-means is denoted by p?

k for
k ¼ 1; $ $ $ ;K? . To get the detected repeated patterns along with the
cluster information, we estimatematricesM

?

k and P
?

k; k ¼ 1; 2; $ $ $ ;K?

in Eq. (3) by reshaping each indicator vectorm?

k and p?

k into a rectan-
gular array of size lv ! lh andNv !Nh, respectively.

4.3 Pattern Refinement
The low-rank method described above enables us to remove occlu-
sions, small illumination variations and photometric distortions as
seen in Fig. 6. As a result, we have very accurate detection of
repeated patterns. We next classify each detected pattern P

?

k into
wall vs. non-wall pixels, using the pre-trained random forest classi-
fier in [3]. That classifier was trained on 140 facade images that do
not overlap with our testing images. Each classified pattern is fur-
ther refined based on the rank-one algorithm of [3], which mini-
mizes the l0-norm of the approximation error. The classification
and refinement steps are illustrated in Fig. 5 with an example of
detected 1-0 patterns shown in Fig. 7d.

5 EXPERIMENTS AND DISCUSSION

The experiments were executed in Matlab, and run on a computer
with an 1.8 GHz Intel Core i7 CPU and a 4GB memory.

We have created a ground truth dataset for a set of 104 façade
images from [3], [4]. See Fig. 8(d) for an example. To this end we
have manually marked the groups of repeated patterns for each
image. The number of groups for each image is the parameter K

Fig. 4. Top: Each color represents one group. Bottom: The reconstructed façade
image.

Fig. 5. Illustration of classification and refinement steps.

Fig. 6. Left: The original façade. Right: The recovered ”clean” façade structure hid-
den beneath the noise.

Fig. 7. (a) Input image. (b) Partition grid showing the estimated periods. (c) Low-
rank component generated by the method in Section 4.2. (d) Estimated 1-0
repeated patterns computed by Algorithm 3 and the refinement step. Each color
represents one group. (e) Ground truth.

Fig. 8. (a) A failure case in [3]. (b) Our method detects all patterns. (c) In [3], the
bottom two patterns are not detected. (d) Ground truth.
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being estimated by Algorithm 3. We tested our method on all 104
images. The detection of repeated patterns in one image is consid-
ered a failure when the estimated K is smaller than the true K,
because in that case it is impossible to recover all the repeated pat-
terns. On the other hand, when the estimated K is the same as or
larger than the true K we could recover the repeated patterns. But
the larger the estimated K, the more fragmented the detection will
be. That is why in addition of counting the number of failures, we
also report the estimation error K̂ "K, where K̂ represents the
estimatedK. The smaller this difference the better.

Out of the 104 images, our method has 4 failures, while the
method in [1] produces 6 failures in a subset consisting of 95
images. The sample means and variances of K̂ "K for our method
and [1] are presented in Table 1. It is clear that by using our low-
rank approach, the resulting estimate is more accurate (in terms of
sample mean) and more robust (in terms of sample variance). To
show the improvement over [1], we present some representative
images in Figs. 10 and 11.

We evaluated the accuracy of the detected repeated pattern pix-
els versus the wall pixels, using an additional metric. For this we
first created a binary image, in which 1 represents a detected pat-
tern pixel, and 0 the wall pixels. We overlaid this binary image
with the corresponding ground truth binary image pixel by pixel
and had exact matches for 93 percent of the pixels on average over
the 104 images.

Fig. 8 presents an image where the proposed method recovered
all the patterns while the method in [3] did not. A more extensive
collection of results can be found in supplemental material.

We found that in the experiments most of the common building
façades can be captured by the Kronecker product structure. One
limitation is that our method fails when a façade contains repeated
structures that do not follow the Kronecker product model, such as
the Penrose tiling style in the third row of Fig. 9. Another limitation
is the inability to handle large photometric variations, since they
are causing ambiguity in the block partition (refer to the first two
rows of Fig. 9 for examples).

In conclusion, this paper describes a novel method for detecting
repeated patterns that follow a Kronecker product formulation. The
Kronecker product model can be applied to a variety of applica-
tions, such as image completion and 3D reconstruction. In addition,
the proposed technique can be easily adapted to detect nested Kro-
necker product structures, in which some of the patterns detected in
the first level of decomposition follows another (possibly different)
Kronecker product structure, in a hierarchical way.
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TABLE 1
Performance Comparison between the Proposed Method and [1]

Regarding the Sample Mean and Variance of K̂ "K

Method Sample mean Sample variance

Method of [1] 1.95 6.09
Our method 0.81 2.01

Fig. 10. From left to right: same order as in Fig. 7. The results demonstrate that the
proposed method is robust to occlusions and different architectural styles.

Fig. 9. The first two rows fail at period detection due to strong illumination variation.
In the third row, the input façade contains a set of Penrose tiling style windows
in the middle top. (a) Original images. (b) Partition grid. (c) Detected patterns.
(d) Ground truth.

Fig. 11. Examples that demonstrate the improvement of DoF based estimation
method over [1]. (a) Input image. (b) Our result: estimated number of groups (K̂)
for all images is 3. (c) [1]: Estimated number of groups (K̂) is 6 for all images. (d)
Ground truth.K ¼ 3 for all images.
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